K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

a: Xét ΔABE và ΔACDcó

AB=AC

góc BAE chung

AE=AD

=>ΔABE=ΔACD

=>BE=CD

b: ΔABE=ΔACD

=>góc ABE=góc ACD

c: góc ABE+góc KBC=góc ABC

góc ACD+góc KCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc KBC=góc KCB

=>KB=KC

d: AB=AC

KB=KC

=>AK là trung trực của BC

=>A,K,I thẳng hàng

18 tháng 4 2021

Không có mô tả. Đánh giá cho mình =))

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

a) Ta có: AD+DB=AB

AE+EC=AC

mà AD=AE(gt)

và AB=AC(ΔABC cân tại A)

nên BD=CE

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: CD=BE(hai cạnh tương ứng)

b) Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{A}\) chung

AE=AD(gt)

Do đó: ΔABE=ΔACD(c-g-c)

Suy ra: \(\widehat{ABE}=\widehat{ACD}\)

1) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)(1)

\(\Leftrightarrow\widehat{B}=\widehat{C}=\dfrac{180^0-50^0}{2}=65^0\)

Vậy: \(\widehat{B}=65^0\)\(\widehat{C}=65^0\)

2) Xét ΔADE có AD=AE(gt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

\(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)

mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

3) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và AD=AE(gt)

nên DB=EC

Xét ΔDBC và ΔECB có 

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(cmt)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

⇒CD=BE(hai cạnh tương ứng)

4) Ta có: ΔDBC=ΔECB(cmt)

nên \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)

Ta có: \(\widehat{OBC}=\widehat{OCB}\)(cmt)

mà \(\widehat{OBC}=\widehat{OED}\)(hai góc so le trong, DE//BC)

và \(\widehat{OCB}=\widehat{ODE}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ODE}=\widehat{OED}\)

Xét ΔODE có \(\widehat{ODE}=\widehat{OED}\)(cmt)

nên ΔODE cân tại O(Định lí đảo của tam giác cân)

20 tháng 1 2021

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC