1+2+2 mũ 2+...+2 mũ 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình cho đề bài thế này nhé \(2^x+2^{x+1}+2^{x+2}+...+2^{x+2017}=2^{2020}-4\) (1)
Nhân cả 2 vế của (1) cho 2, ta được \(2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2018}=2^{2021}-8\) (2)
Lấy (2) trừ theo vế với (1), ta thu được \(2^{x+2018}-2^x=2^{2020}-4\)
\(\Leftrightarrow2^x.2^{2018}-2^x=2^2.2^{2018}-2^2.1\)
\(\Leftrightarrow2^x\left(2^{2018}-1\right)=2^2\left(2^{2018}-1\right)\)
do \(2^{2018}-1\ne0\) nên ta hoàn toàn có thể suy ra \(2^x=2^2\Leftrightarrow x=2\)
Vậy \(x=2\)
1) x3 - 3x2 = 0
<=> x2( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
2) 5x( x - 2020 ) - x + 2020 = 0
<=> 5x( x - 2020 ) - ( x - 2020 ) = 0
<=> ( x - 2020 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2020=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{1}{5}\end{cases}}\)
3) ( 3x - 5 )2 = ( x + 1 )2
<=> ( 3x - 5 )2 - ( x + 1 )2 = 0
<=> [ ( 3x - 5 ) - ( x + 1 ) ][ ( 3x - 5 ) + ( x + 1 ) ] = 0
<=> ( 3x - 5 - x - 1 )( 3x - 5 + x + 1 ) = 0
<=> ( 2x - 6 )( 4x - 4 ) = 0
<=> \(\orbr{\begin{cases}2x-6=0\\4x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
4) ( x2 - 2x )2 - 2( x - 1 )2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x + 1 ) + 2 = 0
<=> ( x2 - 2x )2 - 2x2 + 4x - 2 + 2 = 0
<=> ( x2 - 2x )2 - 2( x2 - 2x ) = 0
<=> ( x2 - 2x )( x2 - 2x - 2 ) = 0
<=> \(\orbr{\begin{cases}x^2-2x=0\\x^2-2x-2=0\end{cases}}\)
+) x2 - 2x = 0 <=> x( x - 1 ) = 0 <=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) x2 - 2x - 2 = 0
<=> x2 - 2x + 1 - 3 = 0
<=> ( x2 - 2x + 1 ) = 3
<=> ( x - 1 )2 = ( ±√3 )2
<=> \(\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\)
a: =5-78*32
=5-2496
=-2491
b: \(=6\left(9-6\right)=6\cdot3=18\)
c: \(=46\cdot\dfrac{\left(123-42\right)}{81}=46\)
d: \(=181+3-84+8\cdot25\)
=100+200
=300
e: \(=64\cdot35+140\cdot84-1=2240-1+11760\)
=14000-1
=13999
f: \(=3^3+25\cdot8-1=26+200=226\)
g: \(=3+2^4+1=16+4=20\)
h: \(=36:4\cdot3+2\cdot25-1=27+50-1=27+49=76\)
Ta có A = \(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2021}\)
= \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2021}}\)
=> 2A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}\)
=> 2A - A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2021}}\right)\)
=> A = \(\frac{1}{2}-\frac{1}{2^{2021}}< \frac{1}{2}\left(\text{ĐPCM}\right)\)
\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)
Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)
\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)
hay \(A⋮10\) (đpcm)
\(\text{#}Toru\)
S = 1 - 2 + 22 - 23 + ....... + 22020
2S = 2(1 - 2 + 22 - 23 + ....... + 22020)
2S = 2 - 22 + 23 - 24 + ....... + 22021
S = (2 - 22 + 23 - 24 + ....... + 22021) - (1 - 2 + 22 - 23 + ....... + 22020)
S = 22021 - 1
3S = 3(22021 - 1)
3S - 22021 = 3(22021 - 1) - 22021
3S - 22021 = 3.22021 - 3 - 22021
➤ 3S - 22021 = 22021 . 2 - 3