(x^2+1)^2 - 6(x^2+1)^2+9
phân tích đa thức sau thành pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)^2-6\left(x^2+1\right)+9\)
\(=\left[\left(x^2+1\right)-3\right]^2\)
\(=\left(x^2+1-3\right)^2\)
\(=\left(x^2-2\right)^2\)
\(1,=\left(x-3\right)\left(x+3\right)\\ 2,=\left(x-y\right)\left(5+a\right)\\ 3,=\left(x+3\right)^2\\ 4,=\left(x-y\right)\left(10x+7y\right)\\ 5,=5\left(x-3y\right)\\ 6,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(9\left(x^2+1\right)-6\left(x^2+1\right)\)
\(=\left(9-6\right)\left(x^2+1\right)\)
\(=3\left(x^2+1\right)\)
\(9+\left(x^2+1\right)-6\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(1-6\right)+9\)
\(=\left(x^2+1\right)\left(-5\right)+9\)
\(=9-5\left(x^2+1\right)\)
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)
\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)
\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)
\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a\)ta có :
\(a\left(a+1\right)-6\)
\(=a^2+a-6\)
\(=a^2+6a-a-6\)
\(=\left(a^2+6a\right)-\left(a+6\right)\)
\(=a\left(a+6\right)-\left(a+6\right)\)
\(=\left(a+6\right)\left(a-1\right)\)
Thay \(a=x^2+3x+1\)vào A ta có :
\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)
\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)
\(\left(3x+1\right)^2-4\left(x-2\right)^2=9x^2+6x+1-4\left(x^2-4x+4\right)=9x^2+6x+1-4x^2+16x-16=5x^2+22x-15=\)
\(\left(5x-3\right)\left(x+5\right)\)
\(9\left(2x+3\right)^2-4\left(x+1\right)^2=9\left(4x^2+12x+9\right)-4\left(x^2+2x+1\right)=36x^2+108x+81-4x^2-8x-4=32x^2+100x+77\)
\(\left(8x+11\right)\left(4x+7\right)\)
\(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(a^{10}+a^5+1\)
\(=\left(a^{10}-a\right)+\left(a^5-a^2\right)+\left(a^2+a+1\right)\)
\(=a\left(a^9-1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\)
\(=a\left(a^3-1\right)\left(a^3+1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\)
\(=\left(a^4+a\right)\left(a^2+a+1\right)\left(a-1\right)+a^2\left(a-1\right)\left(a^2+a+1\right)+\left(a^2+a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^5-a^4+a^2-a\right)+\left(a^3-a^2\right)\left(a^2+a+1\right)+\left(a^2+a+1\right)\)
\(=\left(a^2+a+1\right)\left(a^5-a^4+a^2-a+a^3-a^2+1\right)\)
\(=\left(a^2+a+1\right)\left(a^5-a^4+a^3-a+1\right)\)
1.
\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x+4}{x-3}\)
b.
\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)
\(\Rightarrow x=10\) (thỏa mãn)
2.
\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)
chịu ====
mình cx chịu