Cho tam giác ABC ( góc A=90 độ ) . Kẻ đường cao AH. Trên tia đối của tia HA lấy điểm K sao cho HK=HA
C/m : a) Tam giác ABH= tam giác KBH
b) CB là tia phân giác của góc ACK
c) Góc BAK=góc BCK
Giúp mk vs chìu đi hc r !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔKBH vuông tại H có
BH chung
HA=HK
Do đó: ΔABH=ΔKBH
b: Xét ΔACH vuông tại H và ΔKCH vuông tại H có
CH chung
HA=HK
Do đó: ΔACH=ΔKCH
Suy ra: \(\widehat{ACH}=\widehat{KCH}\)
hay CB là tia phân giác của góc ACK
c: Xét ΔBAC và ΔBKC có
BA=BK
BC chung
AC=KC
Do đó: ΔBAC=ΔBKC
a) Xét tam giác ABH và tam giác KBH có:
AH = KH (gt)
góc BHA = góc BHK = 90 độ
BH : cạnh chung
=> tam giác ABH = tam giác KBH (c.g.c)
b) Xét tam giác ACH và tam giác KCH có:
AH = KH (gt)
góc AHC = góc KHC = 90 độ
CH : cạnh chung
=> tam giác ACH = tam giác KCH (c.g.c)
=> góc C1 = góc C2 (hai góc tương ứng)
=> CB là tia phân giác góc ACK
c) Ta có: BC và AK cắt nhau tại H
Mà H là trung điểm AK
=> H là trung điểm BC
=> BH = CH
Xét tam giác ABH và tam giác CKH có:
BH = CH (cmt)
AH = KH (gt)
góc H1 = góc H2 (đối đỉnh)
=> tam giác ABH = tam giác CKH (c.g.c)
=> góc BAH = góc KCH (hai góc tương ứng)
=> góc BAK = góc BCK
Hình vẽ còn nhiều sai sót, mong em bỏ qua. Đại loại cái hình là thế