giải phương trình : x4 - 3x3 - 6x + 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Khai triển HĐT rút gọn được 3 x 2 + 6x + 7 = 0
Vì (3( x 2 + 2x + 1) + 4 < 0 với mọi x nên giải được x ∈ ∅
Cách 2. Chuyển vế đưa về ( x + 3 ) 3 = ( x - 1 ) 3 Û x + 3 = x - 1
Từ đó tìm được x ∈ ∅
b) Đặt x 2 = t với t ≥ 0 ta được t 2 + t - 2 = 0
Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)
Từ đó tìm được x = ± 1
c) Biến đổi được
d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x ∈ {0; 2; 4}
Đặt f(x) = x4 - 3x3 + x – 1.
f(x) là hàm đa thức nên liên tục trên R.
Ta có: f(0) = -1 < 0
f(-1) = 1 – 3.(-1) – 1 – 1 = 2 > 0
⇒ f(0).f(-1) < 0
⇒ f(x) = 0 có ít nhất một nghiệm xo ∈ (-1; 0) ⊂ (-1 ; 3).
Do đó phương trình đã cho có nghiệm xo ∈ (-1; 3).
1.
a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)
\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)
\(\Leftrightarrow x^3+3x^2+2x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)
b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
1c/
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
Vậy pt có nghiệm duy nhất \(x=-1\)
b) x 4 - 5 x 2 + 4 = 0
Đặt t = x 2 ≥ 0 , ta có phương trình:
t 2 - 5t + 4 = 0 (dạng a + b + c = 1 -5 + 4 = 0)
t 1 = 1 (nhận) ; t 2 = 4 (nhận)
với t = 1 ⇔ x 2 = 1 ⇔ x = ± 1
với t = 4 ⇔ x 2 = 4 ⇔ x = ± 2
Vậy nghiệm của phương trình x = ±1; x = ± 2
x4 – 5x2 + 4 = 0 (1)
Đặt x2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
\(x^4-3x-4=0\\ x^4+x-4x-4=0\\ x^3\left(x+1\right)-4\left(x+1\right)=0\\ \left(x^3-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^3-4=0\Leftrightarrow x^3=4\Leftrightarrow x=\sqrt[3]{4}\\x+1=0\Leftrightarrow x=-1\end{matrix}\right.\)
`x^4 -4sqr{3} -5 =0`
`<=> x^4 = 5 +4sqrt{3}`
`<=> x = +- root{4}{5+4sqrt(3)}`
Vậy `S ={ +- root{4}{5+4sqrt(3)} }`
\(x^4-3x^3-6x+4=0\)
<=>\(\left(x^4+x^3+2x^2\right)-\left(4x^3+4x^2+8x\right)+\left(2x^2+2x+4\right)=0\)
<=>\(x^2\left(x^2+x+2\right)-4x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=0\)
<=>\(\left(x^2+x+2\right)\left(x^2-4x+2\right)=0\)<=>\(\orbr{\begin{cases}x^2+x+2=0\\x^2-4x+2=0\end{cases}}\)
+)\(x^2+x+2=0\)
\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)
=> ko có x thỏa mãn x2+x+2=0
+)\(x^2-4x+2=0\)
\(x^2-4x+2=x^2-4x+4-2=\left(x-2\right)^2-2=0\)
<=>\(\left(x-2\right)^2=2\)<=>\(\orbr{\begin{cases}x-2=\sqrt{2}\\x-2=-\sqrt{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{2}+2\\x=2-\sqrt{2}\end{cases}}\)
Vậy tập nghiệm pt \(S=\left\{2-\sqrt{2};\sqrt{2}+2\right\}\)