Số giá trị của x
/\(x+\frac{5}{2}\)/ + /\(\frac{2}{5}\)- x / =0
Ai giúp mình với mình cần gấp lắm mai thi rồi. Cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\)
\(=\left(x^2+5x+5\right)^2-1+1\)
\(=\left(x^2+5x+5\right)^2\ge0\forall x\)
Vậy \(P\ge0\forall x\)
\(b,P=\left(x^2+5x+5\right)^2\left(cmt\right)\)
Thay \(x=\frac{\sqrt{7}-5}{2}\)vào P ta được
\(P=\left(\left(\frac{\sqrt{7}-5}{2}\right)^2+5.\frac{\sqrt{7}-5}{2}+5\right)^2\)
\(=\left(\frac{7-10\sqrt{7}+25}{4}+\frac{10\sqrt{7}-50}{4}+\frac{20}{4}\right)^2\)
\(=\left(\frac{32-10\sqrt{7}+10\sqrt{7}-50+20}{4}\right)^2\)
\(=\left(\frac{2}{4}\right)^2\)
\(=\frac{1}{4}\)
a,
P=(x+1)(x+2)(x+3)(x+4)+1
P=[(x+1).(x+4)].[(x+2).(x+3)]+1
P=(x^2+5x+4)(x^2+5x+6)+1
P=[(x^2+5x+5)-1].[(x^2+5x+5)+1]+1
P=(x^2+5x+5)^2-1+1
P=\(\left(x^2+5x+5\right)^2\) \(\ge\)0 với mọi x
Câu b thì thay x vào rồi bấm máy ra ra kết quả
\(\left(x-3\right)^2+\left(y-1\right)^2+5\)
ta có \(\hept{\begin{cases}\left(x-3\right)^2\ge0x\varepsilon r\\\left(y-1\right)^2\ge0y\varepsilon r\end{cases}}\)
=>\(\left(x-3\right)^2+\left(y-1\right)^2+5\ge5\) với mọi x.y \(\varepsilon\) R
=>biểu thức đạt giá trij lớn nhất là 5 tại
\(\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-1\right)^2=0\end{cases}=>\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
B= (x-1).(x-2)....(x-35)
Thay x=34 vào B, ta được:
B=(34-1).(34-2).....(23-34).(34-35)
B= 0
Vậy B=0
do \(\left(x-2\right)^2\ge o\forall x\)
\(\Rightarrow\left(x-2\right)^2+5\ge5\)
\(\Rightarrow\frac{6}{\left(x-2\right)^2+5}\ge\frac{6}{5}\)
Suy ra \(\frac{6}{\left(x-2\right)^2+5}\)đạt giá trị nhỏ nhất là \(\frac{6}{5}\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy
Bạn tự tìm ĐKXĐ nhé :)
Xét tử thức : \(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
Xét mẫu thức : \(\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}=\sqrt{\left(\frac{4}{x}-1\right)^2}=\left|\frac{4}{x}-1\right|=\left|\frac{x-4}{x}\right|\)
Từ đó rút gọn P
Để a xác định thì :\(x^2-2x\)khác 0
Nên \(x\left(x-2\right)\)khác 0
\(\Rightarrow x\)khacs0 và x khác 2
\(Ta\)\(có:\)\(A=\frac{x^2-4}{x^2-2x}=\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+2}{x}\)
Với x khác 0, x khác 2; x thuộc Z nên x+2 thuộc Z
Lại có :\(\frac{x+2}{x}=\frac{x}{x}+\frac{2}{x}=1+\frac{2}{x}\)
Để A thuộc Z thì \(x\varepsilon\)Ư(2)
Mà Ư(2) là 2 và -2
Vậy x=2 và x=-2 thì A thuộc Z
Chúc bạn học tốt nhé!
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Có \(\left|x+\frac{5}{2}\right|\ge0\)với mọi x
\(\left|\frac{2}{5}-x\right|\ge0\)với mọi x
=> Để \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)=> \(\hept{\begin{cases}\left|x+\frac{5}{2}\right|=0\\\left|\frac{2}{5}-x\right|=0\end{cases}}\)
=> \(\hept{\begin{cases}x+\frac{5}{2}=0\\\frac{2}{5}-x=0\end{cases}}\)
=> \(\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{2}{5}\end{cases}}\)(Không thỏa mãn vì x không thể đồng thời nhận 2 giá trị)
=> Không có giá trị nào của x thỏa mãn đề bài
=> Số giá trị của x là 0
\(\left|x+\frac{5}{2}\right|\ge0\) và \(\left|\frac{2}{5}-x\right|\ge0\)
\(\Rightarrow\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\Leftrightarrow\hept{\begin{cases}x+\frac{5}{2}=0\\\frac{2}{5}-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{2}{5}\end{cases}}}\)
Vậy x có 2 giá trị.