K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2022

Bạn tham khảo nhé.

Đặt x - 2 = t
=> t^4 + (t - 1)^4 = 1
<=> t^4 + t^4 - 4t^3 + 6t² - 4t + 1 - 1 = 0
<=> 2t^4 - 4t^3 + 6t² - 4t = 0
<=> t(2t^3 - 4t² + 6t - 4) = 0
<=> t( 2t^3 - 2t² + 4t - 2t² + 2t - 4 ) = 0
<=> t[t(2t² - 2t + 4) - 1(2t² - 2t + 4)] = 0
<=> t(t - 1)(2t² - 2t + 4) = 0
=> t = 0
=> t - 1 = 0
=> 2t² - 2t + 4 = 0

=> t = 0
=> t = 1
=> Không có nghiệm

=> x - 2 = 0
=> x - 2 = 1

=> x = 2
=> x = 3

28 tháng 1 2016

Ta cm BĐT :

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

<=> \(3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac\ge0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng với mọi a ; b; c )

Dấu '' = '' BĐT xảy ra khi a =b =c 

(*) ÁP dụng BĐT với \(a=x^2;b=x;c=1\) ta có

( VẾ trái ) = \(\left(x^2+x+1\right)^2\le3\left[\left(x^2\right)^2+x^2+1\right]=3\left(x^4+X^2+1\right)=\left(vế\right)phải\)

Dấu ' = '' xảy ra khi \(x^2=x=1\Leftrightarrow x=1\)

Vậy pt có n* duy nhất là 1 

x2-(m+4).x+4m=0

1) Khi m=-1

=> x2-3x-4=0

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

Xét \(\Delta=\left(m+4\right)^2-4.4m=m^2-8m+16=\left(m-4\right)^2>0\)

\(\Rightarrow x\ne4\)

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=m+4\\x_1x_2=4m\end{cases}}\)

do đó

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+x_2\left(x_1+x_2\right)=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow m^2+8m+16-4m=16\)

\(\Leftrightarrow m^2+4m=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

11 tháng 6 2021

ý 1: Để pt (1) có 1 nghiệm duy nhất thì \(\Delta=0\)

\(\Delta=\left(-5\right)^2-4m+8=-4m+33\)

\(\Rightarrow33-4m=0\Rightarrow m=\dfrac{33}{4}\)

ý 2: Khi \(m=4\Rightarrow x^2-5x+2=0\)

\(\Delta=\left(-5\right)^2-8=17\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)

Vậy...

 

11 tháng 6 2021

Cảm ơn nhé nếu có dịp cảm ơn sau ạ

14 tháng 2 2016

3 năm nữa anh hotdog2002 nhé

21 tháng 7 2017

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

1 tháng 4 2019

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

11 tháng 12 2023

1) \(x^2+2x+1=\left(x+2\right)\sqrt[]{x^2+1}\left(1\right)\)

\(\Leftrightarrow x^2+2x+1=x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\left(x\ge-2\right)\)

\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x=x^2\left(x^2+1\right)+4\left(x^2+1\right)+4x\left(x^2+1\right)\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+x^2+4x^2+4+4x^3+4\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+4x^3+5x^2+4x+4\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt[]{3}\left(Tm.x\ge-2\right)\)

Vậy nghiệm của phương trình \(\left(1\right)\) là \(x=\pm\sqrt[]{3}\)

11 tháng 12 2023

2) \(P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\)

Ta có : 

\(\sqrt[]{x^2-2x+13}=\sqrt[]{x^2-2x+1+12}=\sqrt[]{\left(x-1\right)^2+12}\ge\sqrt[]{12}=2\sqrt[]{3},\forall x\in R\)

\(4\sqrt[]{x-3}\ge0,\forall x\ge3\)

\(\Rightarrow P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\ge\sqrt[]{4+12}+0=4\left(khi.x=3\right),\forall x\ge3\)

Vậy \(Min\left(P\right)=4\left(tại.x=3\right)\)