Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải phương trình tìm x
(x2 + x + 1)2 = 5( x4 + x2 + 1)
ai nhanh và chính xác nhất cho 1 like
<=> (x2 + x + 1)2 = 5 [(x4 + 2x2 + 1) - x2]
<=> (x2 + x + 1)2 = 5 [(x2 + 1)2 - x2]
<=> (x2 + x + 1)2 = 5 (x2 - x + 1)(x2 + x + 1)
<=> (x2 + x + 1)2 = (5x2 - 5x + 5)(x2 + x + 1)
<=> (x2 + x + 1)2 - (5x2 - 5x + 5)(x2 + x + 1) = 0
<=> (x2 + x + 1)(x2 + x + 1 - 5x2 + 5x - 5) = 0
<=> (x2 + x + 1)(-4x2 + 6x - 4) = 0
<=> (x2 + x + 1)(x2 - \(\dfrac{3}{2}\)x + 1) = 0 (chia cả hai vế cho -4)
<=> (\(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\))(x2 - 2. x. \(\dfrac{3}{4}\)+ \(\dfrac{9}{16}\)+\(\dfrac{7}{16}\)) = 0
<=> [\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)][\(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}\)] = 0
Vì \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\); \(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0,\forall x\)
=> [\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)][\(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}\)] > 0, \(\forall x\)
Vậy phuong trình vô nghiệm.
(x2 + x + 1)2 = 5( x4 + x2 + 1)
<=> (x2 + x + 1)2 = 5 [(x4 + 2x2 + 1) - x2]
<=> (x2 + x + 1)2 = 5 [(x2 + 1)2 - x2]
<=> (x2 + x + 1)2 = 5 (x2 - x + 1)(x2 + x + 1)
<=> (x2 + x + 1)2 = (5x2 - 5x + 5)(x2 + x + 1)
<=> (x2 + x + 1)2 - (5x2 - 5x + 5)(x2 + x + 1) = 0
<=> (x2 + x + 1)(x2 + x + 1 - 5x2 + 5x - 5) = 0
<=> (x2 + x + 1)(-4x2 + 6x - 4) = 0
<=> (x2 + x + 1)(x2 - \(\dfrac{3}{2}\)x + 1) = 0 (chia cả hai vế cho -4)
<=> (\(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\))(x2 - 2. x. \(\dfrac{3}{4}\)+ \(\dfrac{9}{16}\)+\(\dfrac{7}{16}\)) = 0
<=> [\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)][\(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}\)] = 0
Vì \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\); \(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}>0,\forall x\)
=> [\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)][\(\left(x-\dfrac{3}{4}\right)^2+\dfrac{7}{16}\)] > 0, \(\forall x\)
Vậy phuong trình vô nghiệm.