Biết \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\).Chứng minh rằng:\(abcd\le\frac{1}{81}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\le1-\frac{d}{d+1}=\frac{1}{d+1}\\\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{a}{a+1}=\frac{1}{a+1}\\\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\le1-\frac{b}{b+1}=\frac{1}{b+1}\\\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\le1-\frac{c}{c+1}=\frac{1}{c+1}\end{matrix}\right.\)
Áp dụng BĐT Cauchy cho 3 bộ số thực không âm
\(\Rightarrow\left\{\begin{matrix}\frac{1}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\\\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{b+1}\ge\frac{a}{a+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\\\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\end{matrix}\right.\)
Nhân từng vế:
\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3}}\)
\(\Rightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
\(\Rightarrow1\ge81abcd\)
Vậy \(abcd\le\frac{1}{81}\left(đpcm\right)\)
p/s : lí do tớ tự trả lời câu hỏi của mình là để coi câu trả lời của mình có đúng hay ko thôi nha , mong các bạn đứng có hiểu lầm , nếu bạn nào có cách nào nhanh và gọn hơn thì phiền các bạn chỉ dùm luôn nha.
Mình nghĩ cách làm của bạn là ok rồi đấy
Bản chất là ngắn, có điều bạn trình bày quá cẩn thận nên khiến nó dài thôi. Khuyên chân thành là nếu đi thi sau khi áp dụng quy tắc "tương tự" để đỡ tốn thời gian hơn, cũng k bị mất điểm.
Ẹt số xui đưa link cũng bị duyệt
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{d+1}=1-\frac{d}{d+1}\ge\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\). TƯơng tự cho 3 BĐT còn lại
\(\frac{1}{a+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}};\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
Nhân theo vế 4 BDT trên ta có:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\right)^3}\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge\frac{81abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
Hay ta có ĐPCM
Bài 1.
A = 1/(a + 1) + 1/(b + 1) + 1/(c + 1) + 1/(d + 1) ≥ 3
→ 1/(a + 1) ≥ 1 - 1/(b + 1) + 1 - 1/(c + 1) + 1 - 1/(d + 1)
→ 1/(a + 1) ≥ b/(b + 1) + c/(c + 1) + d/(d + 1)
áp dụng BĐT Cauchy cho 3 số dương:
b/(b + 1) + c/(c + 1) + d/(d + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)]
→ 1/(a + 1) ≥ 3 ³√(bcd)/[(b + 1)(c + 1)(d + 1)] tương tự
1/(b + 1) ≥ 3 ³√(acd)/[(a + 1)(c + 1)(d + 1)]
1/(c + 1) ≥ 3 ³√(abd)/[(a + 1)(b + 1)(d + 1)]
1/(d + 1) ≥ 3 ³√(abc)/[(a + 1)(b + 1)(c + 1)]
nhân theo vế → 1/[(a + 1)(b + 1)(c + 1)(d + 1)] ≥ 81abcd/[(a + 1)(b + 1)(c + 1)(d + 1)]
→ 1 ≥ 81abcd → abcd ≤ 1/81
TK NHA
Áp dụng BDT AM-GM ta có:
\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}\)
\(=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\)
\(\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\)
Tương tự cho các BĐT còn lại cũng có:
\(\frac{1}{b+1}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\)
\(\frac{1}{c+1}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\)
\(\frac{1}{d+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Nhân theo vế 4 BĐT trên ta có:
\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\sqrt[3]{\left(\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}\right)^3}\)
\(\Rightarrow abcd\le\frac{1}{81}\)
Lời giải :
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}\) ( Cô-si )
Chứng minh tương tự ta cũng có :
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(a+1\right)\left(c+1\right)\left(d+1\right)}}\); \(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(a+1\right)\left(b+1\right)\left(d+1\right)}}\);
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)
Nhân theo vế 4 BĐT ta được :
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\sqrt[3]{\frac{a^3b^3c^3d^3}{\left(a+1\right)^3\left(b+1\right)^3\left(c+1\right)^3\left(d+1\right)^3}}\)
\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\cdot\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
\(\Leftrightarrow1\ge81\cdot abcd\)
\(\Leftrightarrow abcd\le\frac{1}{81}\)
Ta có đpcm.
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\frac{1}{3}\)
chết dòng thứ 5 từ dưới lên thiếu biến \(d\) trên tử số :( ai rủ lòng thương sửa hộ phát :>
Vô lí vì a+b+c=0\(\Rightarrow\frac{5}{a+b+c}\)không có đáp án
Ta chứng minh bất đẳng thức sau
Với x, y, z > 0 ta luôn có \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (1)
Theo BĐT Cô-si
\(x^4+x^4+y^4+z^4\ge4\sqrt[4]{x^8y^4z^4}=4x^2yz\)
\(y^4+y^4+z^4+x^4\ge4\sqrt[4]{y^8z^4x^4}=4y^2zx\)
\(z^4+z^4+x^4+y^4\ge4\sqrt[4]{z^8x^4y^4}=4z^2xy\)
Cộng vế theo vế ta được: \(4\left(x^4+y^4+z^4\right)\ge4\left(x^2yz+y^2zx+z^2xy\right)\)
\(\Leftrightarrow\) \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
Vậy (1) đc c/m
Bất đẳng thức cần c/m có thể viết lại thành
\(\frac{abcd}{a^4+b^4+c^4+abcd}+\frac{abcd}{b^4+c^4+d^4+abcd}+\frac{abcd}{c^4+d^4+a^4+abcd}+\frac{abcd}{d^4+a^4+b^4+abcd}\le1\)
Áp dụng (1) ta có
\(\frac{abcd}{a^4+b^4+c^4+abcd}\le\frac{abcd}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
Tương tự
\(\frac{abcd}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\)
\(\frac{abcd}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
\(\frac{abcd}{d^4+a^4+b^4+abcd}\le\frac{c}{a+b+c+d}\)
Cộng theo vế suy ra đpcm.
Theo BĐT AM-GM: \(a^4+b^4\ge2a^2b^2\)
Tương tự suy ra \(a^4+b^4+c^4\)\(\ge a^2b^2+b^2c^2+c^2a^2\)
Tiếp tục dùng AM-GM: \(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2ab^2c\)
Tương tự suy ra \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4+abcd\ge abc\left(a+b+c\right)+abcd\)\(=abc\left(a+b+c+d\right)\)
\(\Rightarrow\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c+d\right)}\)
Tương tự cho 3 BĐT còn lại rồi cộng theo vế:
\(VT\le\frac{a+b+c+d}{abcd\left(a+b+c+d\right)}=\frac{1}{abcd}=VP\)
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)