Cho n(n+1)(2n + 1 ) / 6 là tổng của n số chính phương đầu tiên. Khi đó tổng 10 số chính phương đầu tiền là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng 10 số chính phương đầu tiên là :
\(1^2+2^2+3^2+...+10^2=\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Vậy tổng của 10 số chính phương đầu tiên là 385
Tổng của 10 số chính phương đầu tiên là :
\(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}\)=385
bài 2 bạn có thể tham khảo tại Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
chúc bn hok tốt !
Cho n(n+1)(2n + 1 ) / 6 là tổng của n số chính phương đầu tiên. Khi đó tổng 10 số chính phương đầu tiền là gì
=>Tổng của 10 số chính phương đầu tiên là :
\(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
#)Giải :
a)Theo đầu bài, ta có : \(n=a^2+b^2\)
\(\Rightarrow2n=2a^2+2b^2\Rightarrow2n=a^2+2ab+b^2+a^2-2ab+b^2=\left(a+b\right)^2+\left(a-b\right)^2\)
\(\Rightarrowđpcm\)
b)Theo đầu bài, ta có : \(2n=a^2+b^2\)
\(\Rightarrow n=\frac{a^2}{2}+\frac{b^2}{2}\Rightarrow\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)+\left(\frac{a^2}{4}+2.\frac{a}{2}.\frac{b}{2}+\frac{b^2}{4}\right)=\frac{\left(a+b\right)^2}{2}+\frac{\left(a-b\right)^2}{2}\)
\(\Rightarrowđpcm\)
Tổng của n số chẵn khác 0 đầu tiên là :
\(2+4+6+....+2n\)
\(=2\left(1+2+3+....+n\right)\)
\(=2.\frac{n\left(n+1\right)}{2}\)
\(=n\left(n+1\right)\) là tích 2 số tự nhiên liên tiếp
=> \(n\left(n+1\right)\) không thể là số chính phương
=> Tổng của n số chẵn khác 0 đầu tiên không thể là số chính phương (đpcm)
tính tổng n số lẻ đầu tiên:
S= 1+3+5+7+...+(2n-3)+(2n-1)
=> ta có 2 trường hợp sau:
TH1: n chẵn:
S=(1+2n-1)+(3+2n-3)+... có n/2 số hạng, mà mỗi số hạng có giá trị là 2n
Vậy S= 2n= n^2
TH2: n lẻ:
Để tính S ta cũng ghép như trường hợp trên nhưng ta đc số hạng ,mỗi số hạng có giá trị là 2n:
=> Tổng S= 2n+n=n^2
Vậy S= 1+3+5+7+...+(2n-3)+(2n-1)= n^2 nên S là 1 số chính phương.
Tổng của 10 số chính phương đầu tiên là : \(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)