Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của 10 số chính phương đầu tiên là : \(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Tổng của 10 số chính phương đầu tiên là :
\(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}\)=385
bài 2 bạn có thể tham khảo tại Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
chúc bn hok tốt !
Cho n(n+1)(2n + 1 ) / 6 là tổng của n số chính phương đầu tiên. Khi đó tổng 10 số chính phương đầu tiền là gì
=>Tổng của 10 số chính phương đầu tiên là :
\(\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Số hạng thứ n của dãy là:n(n+1)/2
Số hạng thứ n-1 của dãy là:(n-1)n/2
Ta có:(n-1)n/2+n(n+1)/2=(n^2-n)/2+(n^2+n)/2
=(2n^2)/2=n^2
Vì n thuộc N nên n^2 là số chính phương
Vậy tổng 2 số hạng liên tiếp của dãy là số chính phương.
Ta xét tổng hai số
(n-1)×n/2 + n×(n+1)/2
=> (n-1)×n+n×(n+1) /2
=>n×[(n-1)×(n+1)] /2
=>n×2n /2
=> 2×n2 /2
=> n2
bài toán được chứng minh
TH1) Với n = 6k
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6
=> Loại
TH2) Với n = 6k+1
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)
=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương
Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1
=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương
+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp
+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương
=> k \(\equiv\)0 ( mod 8) => k = 8h
=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)
+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương
+) Với h \(\equiv\)1 (mod 7 ) => 32h + 1 không là số cp
=> h \(\equiv\)0; 2; 5 (mod 7 )
=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7 ( với m;n; t nguyên dương )
Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất
=> n = 6k + 1 và k = 8h = 56
=> n = 337
=> A = 38025 là số chính phương
TH3) Với n = 6k + 2
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6
TH4) Với n = 6k + 3
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6
TH5) Với n = 6k + 4
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6
TH6) Với n = 6k + 5
ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)
=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)
mà ( k + 1; 12k + 11 ) = 1
=> k + 1 và 12k + 11 là 2 số chính phương
tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11
=> Trường hợp này loại
Vậy n = 337
Tổng 10 số chính phương đầu tiên là :
\(1^2+2^2+3^2+...+10^2=\frac{10\left(10+1\right)\left(2.10+1\right)}{6}=385\)
Vậy tổng của 10 số chính phương đầu tiên là 385
mình nhanh nè bạn tk mình nhé