K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(DK\hept{\begin{cases}x^3+2x^2y-xy^2-2y^3\ne0\\x-y\ne0\end{cases}}\)

\(\Leftrightarrow\left(x^2+3xy+2y^2\right)\left(x-y\right)=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3=x^3+2x^2y-xy^2-2y^3\)

\(\Leftrightarrow x^2y=0\)\(\Rightarrow ko.dung.\)

25 tháng 12 2016

?????????

25 tháng 12 2016

Ta phân tích mẫu:

\(x^3+2x^2y-xy^2-2y^3\)

\(=x^3+3x^2y+2xy^2-x^2y-3xy^2-2y^3\)

\(=x\left(x^2+3xy+2y^2\right)-y\left(x^2+3xy+2y^2\right)\)

\(=\left(x-y\right)\left(x^2+3xy+2y^2\right)\)

Thay vào ta có:

\(\frac{x^2+3xy+2y^2}{\left(x-y\right)\left(x^2+3xy+2y^2\right)}=\frac{1}{x-y}\)

Vậy ta có điều phải chứng minh

25 tháng 12 2016

tks nha <3

26 tháng 9 2015

\(VP=\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)

\(=\frac{x.\left(x+y\right)+2y.\left(x+y\right)}{x.\left(x^2-y^2\right)+2y.\left(x^2-y^2\right)}=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}=VT\left(\text{điều phải chứng minh}\right)\)

5 tháng 12 2021

\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

28 tháng 6 2017

Rút gọn phân thức

7 tháng 1 2018

\(5x^2y-3xy+\frac{1}{2}x^2y-xy+5xy-\frac{1}{3}x+\frac{1}{2}+\frac{2}{3}x-\frac{1}{4}\)

\(=\left(5x^2y+\frac{1}{2}x^2y\right)+\left(-3xy-xy+5xy\right)+\left(-\frac{1}{2}x+\frac{2}{3}x\right)+\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(=\frac{11}{2}x^2y+xy+\frac{1}{6}x+\frac{1}{2}\)