K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2022

a, \(=64x^3-3.16x^2+3.4x-1-64x^3-12x+48x^2+9=8\)

24 tháng 8 2022

ko biết

a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)

\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)

\(=36\)

Bài 2: 

a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)

b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)

\(=64x^3-16x^2-100x+125\)

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

17 tháng 2 2021

\(a.\)

\(\dfrac{16x^2-1}{16x^2-8x+1}\\ =\dfrac{\left(4x\right)^2-1}{\left(4x-1\right)^2}\\ =\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\\ =\dfrac{4x+1}{4x-1}\)

\(b.\)

\(\dfrac{4x^2-4xy+y^2}{-\left(4x^2-y^2\right)}\\ =-\dfrac{\left(2x-y\right)^2}{\left(2x-y\right)\left(2x+y\right)}\\ =\dfrac{-\left(2x-y\right)}{2x+y}\\ =\dfrac{y-2x}{y+2x}\)

a) Ta có: \(\dfrac{16x^2-1}{16x^2-8x+1}\)

\(=\dfrac{\left(4x-1\right)\left(4x+1\right)}{\left(4x-1\right)^2}\)

\(=\dfrac{4x+1}{4x-1}\)

b) Ta có: \(\dfrac{4x^2-4xy+y^2}{y^2-4x^2}\)

\(=\dfrac{\left(2x-y\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{\left(y-2x\right)^2}{\left(y-2x\right)\left(y+2x\right)}\)

\(=\dfrac{y-2x}{y+2x}\)

16 tháng 7 2023

a) \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2+9\right)\)

\(=\left(x+3\right)^2+2\left(x+3\right)\left(x-3\right)+\left(x-3\right)^2\)

\(=\left[\left(x+3\right)+\left(x-3\right)\right]^2\)

\(=\left(x+3+x-3\right)^2\)

\(=\left(2x\right)^2\)

\(=4x^2\)

b) \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=\left(64x^3-48x^2+12x-1\right)-\left(64x^3+12x-48x^2-9\right)\)

\(=64x^3-48x^2+12x-1-64x^3-12x+48x^2+9\)

\(=\left(64x^3-64x^3\right)-\left(48x^2-48x^2\right)+\left(12x-12x\right)-\left(1-9\right)\)

\(=0-0+0+8\)

\(=8\)

16 tháng 7 2023

a) (x + 3)² + (x - 3)² + 2(x² - 9)

= (x + 3)² + 2(x + 3)(x - 3) + (x - 3)²

= (x + 3 + x - 3)²

= (2x)²

= 4x²

b) (4x - 1)³ - (4x - 3)(16x² + 3)

= 64x³ - 48x² + 12x - 1 - 64x³ - 12x + 48x² + 9

= (64x³ - 64x³) + (-48x² + 48x²) + (12x - 12x) + (-1 + 9)

= 8

16 tháng 10 2020

Bài 1 : 

a, \(\left(x+3\right)^2+\left(x-3\right)^2+2\left(x^2-9\right)\)

\(=x^2+6x+9+x^2-6x+9+2x^2-18\)

\(=4x^2\)

b, \(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-32x^2+4x-16x^2+8x-1-64x^3-12x+48x^2+9=8\)

16 tháng 10 2020

Bài 2 : 

a, \(16x-8xy+xy^2=x\left(16-8y+y^2\right)=x\left(4-y\right)^2\)

b, \(3\left(3-x\right)-2x\left(x-3\right)=3\left(3-x\right)+2x\left(3-x\right)=\left(3+2x\right)\left(3-x\right)\)

c, \(3x^2+4x-4=3x^2+6x-2x-4=\left(x+2\right)\left(3x-2\right)\)

11 tháng 2 2018

a, (3x+1)(7x+3)=(5x-7)(3x+1)

<=> (3x+1)(7x+3)-(5x-7)(3x+1)=0

<=> (3x+1)(7x+3-5x+7)=0

<=> (3x+1)(2x+10)=0

<=> 2(3x+1)(x+5)=0

=> 3x+1=0 hoặc x+5=0

=> x= -1/3 hoặc x=-5

Vậy...

27 tháng 5 2018

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

26 tháng 8 2021

`a)sqrt{1-4x+4x^2}+5=x-2`

`<=>\sqrt{(2x-1)^2}=x-2-5`

`<=>|2x-1|=x-7(x>=7)`

`<=>[(2x-1=x-7),(2x-1=7-x):}`

`<=>[(x=-6(ktm)),(3x=8):}`

`<=>x=8/3(ktm)`

Vậy PTVN

`b)3sqrt{12+4x}+4/7sqrt{147+49x}=3/2sqrt{48+16x}+4(x>=-3)`

`<=>6sqrt{x+3}+4sqrt{x+3}=6sqrt{x+3}+4`

`<=>4sqrt{x+3}=4`

`<=>sqrt{x+3}=1<=>x+3=1`

`<=>x=-2(tm)`

Vậy `S={-2}`

26 tháng 8 2021

a) \(\sqrt{1-4x+4x^2}+5=x-2\Leftrightarrow\sqrt{\left(1-2x\right)^2}+5=x-2\Leftrightarrow\left|1-2x\right|=x-7\left(1\right)\)TH1: \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow1-2x=x-7\Leftrightarrow3x=8\Leftrightarrow x=\dfrac{8}{3}\)(không thỏa đk)

TH2: \(1-2x< 0\Leftrightarrow x>\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow2x-1=x-7\Leftrightarrow x=-6\)(không thỏa đk)

Vậy \(S=\varnothing\)

b) \(3\sqrt{12+4x}+\dfrac{4}{7}\sqrt{147+49x}=\dfrac{3}{2}\sqrt{48+16x}+4\Leftrightarrow6\sqrt{3+x}+4\sqrt{3+x}=6\sqrt{3+x}+4\Leftrightarrow4\sqrt{3+x}=4\Leftrightarrow\sqrt{3+x}=1\Leftrightarrow3+x=1\Leftrightarrow x=-2\)