CMR: 3 + 32 + 33 +...+345 chia hết cho 39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39 . 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39
S = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 3 + 3 2 + 3 3 + 3 4 + 3 5 + 3 6 + 3 7 + 3 8 + 3 9 = 39 + 3 3 . 39 + 3 6 . 39 = 39. 1 + 3 3 + 3 6 ⋮ − 39
Vậy S chia hết cho -39
Số các số hạng là: 101 – 0 + 1 = 102 số.
Ta nhận thấy:
1 + 3 + 32 = 1 + 3 + 9 = 13;
33 + 34 + 35 = 33(1 + 3 + 32) = 33.13;
…
Mà 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 nên 102 chia hết cho 3, nghĩa là:
A = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)
= (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)
= 13 + 33.13 + … + 399.13
= 13.(1 + 33 + … + 399) chia hết cho 13.
Vậy A chia hết cho 13.
A =3+32+33+...+3119
A=(3+32)+(33+34)+...(3118+3119)
A=3.(1+3)+33.(1+3)+...+3118.(1+3)
A=3.4+33.4+...+3118.4
A=4.(3+33+...+3118)\(⋮\)4
=>A\(⋮\)4
A=3+32+33+...+3119
A=(3+32+33)+...+(3117+3118+3119)
A=3.(1+3+9)+...+3117.(1+3+9)
A=3.13+...+3117.13
A=13.(3+...+3117)\(⋮\)13
vì A\(⋮\)4
và A\(⋮\)13
=>A\(⋮\)4.13
=>A\(⋮\)52
vậy A\(⋮\)4 và A\(⋮\)52
\(S=1+3+3^2+3^3+...+3^8+3^9\)
\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
3+3^2+3^3+...+3^45
=>(3+3^2+3^3)+...+(3^43+3^44+3^45)
=>3.(1+3+3^2)+...+3^43.(1+3+3^2)
=>(1+3+3^2).(3+3^4+3^7+...+3^43)
=>13.(3+3^4+3^7+...+3^43)
=>13.3.(1+3^3+3^6+...+3^42)
=>39.(1+3^3+3^6+...+3^42) chia hết cho 39
=>3+3^2+3^3+...+3^43 chia hết cho 39