K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2015

th1: \(x-\frac{1}{2}>0\) và \(x+\frac{1}{2}

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

9 tháng 3 2016

ta có : \(x\ne3\) để mẫu khác 0

Vì 2 phân số có cùng mẫu nên

\(\left|x-5\right|=\left|x-1\right|\)

*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)

\(x-5=x-1\)

\(0x=4\)

KHông có giá trị x

*TH2:

\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)

\(-\left(x-5\right)=-\left(x-1\right)\)

\(\Rightarrow-x-5=-x+1\)

\(0x=-4\)

Không có giá trị x

*TH3:

\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)

\(-\left(x-5\right)=x-1\)

\(\Rightarrow5+1=2x\)

\(\frac{6}{2}=x\)

\(x=3\)

Mà \(x\ne3\) 

nên ko có giá trị thỏa mãn

vậy không có giá trị x nguyên thỏa mãn với đề bài

9 tháng 3 2016

|x-5|/|x-3|=|x-1|/|x-3|

=>|x-5|=|x-1|

=>x-5=x-1 hoặc x-5=-(x-1)=-x+1

+)x-5=x-1 =>x-x=5-1=>0=4( vô lí)

+)x-5=-x+1=>x+x=5+1=>2x =6=>x=3

 thay x=3 vào bt thì |x-3|=0=> phân số ko có nghĩa

 vậy ko tồn tại x thoả mãn

13 tháng 3 2016

|x-5|/|x-3|=|x-1|/|x-3|

=>|x-5|=|x-1|

=>x-5=x-1 hoặc x-5=-(x-1)=-x+1

+)x-5=x-1 =>x-x=5-1=>0=4( vô lí)

+)x-5=-x+1=>x+x=5+1=>2x =6=>x=3

 thay x=3 vào bt thì |x-3|=0=> phân số ko có nghĩa

 vậy ko tồn tại x thoả mãn

Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)

:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)

\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)

Từ (1),(2) và (3)

Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)

Với y=1 thì x=2

Với y=2 thì x=1

Với y=3 thì x=0

Vậy....................

26 tháng 10 2020

\(\text{méo biết}\)

11 tháng 4 2021

= căn xy + căn x + căn y còn lại tự tính

25 tháng 7 2017

bài này cần x,y,z>0 nữa, vừa xem xong bài y hệt của LCC :v

Dự đoán dấu "=" khi \(x=y=z=1\) thì \(P=24\)

Ta chứng minh P=24 là GTNN

Thật vậy áp dụng BĐT C-S ta có:

\(P=Σ\frac{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}{\left(z^2+1\right)\left(x+y\right)^2}\ge\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\)

Cần chứng minh: \(\frac{\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2}{Σ\left(z^2+1\right)\left(x+y\right)^2}\ge24\)

\(\Leftrightarrow\left(Σ\left(x+1\right)\left(y+1\right)\left(x+y\right)\right)^2\ge24Σ\left(z^2+1\right)\left(x+y\right)^2\)

Đặt \(\hept{\begin{cases}x+y+z=3u\\xy+yz+xz=3v^2\\xyz=w^3\end{cases}}\) \(\Rightarrow u=1\) thì

\(Σ\left(x+1\right)\left(y+1\right)\left(z+1\right)=Σ\left(x^2y+x^2z+2x^2+2xy+2x\right)\)

\(=9uv^2-3w^3+2u\left(9u^2-6v^2\right)+9uv^2+6u^3=3\left(8u^3+uv^2-w^3\right)\)

Và  \(Σ\left(z^2+1\right)\left(x+y\right)^2=2Σ\left(x^2y^2+x^2yz+x^2u+xyu^2\right)\)

\(=2\left(9v^4-6uw^3+3uw^3+9u^4-6u^2v^2+3u^2v^2\right)\)

\(=6\left(3u^4-u^2v^2+3v^4-uw^3\right)\). Can cm \(f\left(w^3\right)\ge0\)

\(f\left(w^3\right)=\left(8u^3+uv^2-w^3\right)^2-16\left(3u^6-u^4v^2+3u^2v^4-u^3w^3\right)\)

\(f'\left(w^3\right)=-2\left(8u^3+uv^2-w^3\right)+16u^3=2w^3-2uv^2\le0\)

Thay \(f\) la ham` ngh!ch bien, do đó, BĐT có 1 GTLN của w3 khi 2 biến bằng nhau

Đặt \(y=x;z=3-2x\), Khi đó: 

\(BDT\Leftrightarrow\left(x-1\right)^2\left(x^4-2x^3-11x^2+24x+4\right)\ge0\)