\(m=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
tìm giá trị nhỏ nhất của m biết: x +y =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+zx}\)
\(M\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+xz\right)}+\frac{7}{xy+yz+zx}\)
Áp dụng BĐT Cauchy - Schwarz :
\(\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}\ge\frac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)
và \(\frac{7}{xy+yz+xz}\ge\frac{7}{\frac{1}{3}\left(x+y+z\right)^2}=21\)
\(\Rightarrow M\ge9+21=30\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng BĐT Cauchy schwarz ta có:
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
\(\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+zx}\)
\(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{7}{2\left(xy+yz+zx\right)}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{7}{\frac{2\left(x+y+z\right)^2}{3}}=30\)
Đẳng thức xảy ra tại x=y=z=1/3
Ta có xy=2 => \(y=\frac{2}{x}\)
ta có : M = \(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}=\frac{1}{x}+x+\frac{3}{2x+\frac{2}{x}}+\frac{2}{\frac{2}{x}}-x\)= \(\left(x+\frac{1}{x}\right)+\frac{3}{2\left(\frac{1}{x}+x\right)}\)
Áp dụng BĐT AM - GM ta được :
M \(\ge2\sqrt{\frac{\left(\frac{1}{x}+x\right)3}{\left(\frac{1}{x}+x\right)2}}=2\sqrt{\frac{3}{2}}=\sqrt{6}\)
Dấu "="......
Vậy Min M = \(\sqrt{6}\) Khi ......
============
bấm đi bấm lại 2 lần , máy lỗi , phần tìm x,y bạn tự làm nhé
=========================
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)
Dự đoán điểm rơi \(x=y=\frac{1}{2}\)
Giải
Áp dụng bđt Cô-si ta có: \(1=\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{xy}\ge4\)
Ta có:: \(\left(xy+\frac{1}{xy}\right)^2=\left[\left(xy+\frac{1}{16xy}\right)+\frac{15}{16xy}\right]^2\)
\(\ge\left(2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4\right)^2\)
\(=\left(\frac{1}{2}+\frac{15}{4}\right)^2\)
\(=\frac{289}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy .................