K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

a.

Tìm min:

$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$

Vậy $y_{\min}=2$

----------------

Mặt khác: 

$y=4\sin x(\sin x+1)-8(\sin x+1)+11$

$=(\sin x+1)(4\sin x-8)+11$

$=4(\sin x+1)(\sin x-2)+11$

Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$

$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$

$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$

Vậy $y_{\max}=11$

 

AH
Akai Haruma
Giáo viên
2 tháng 9 2023

b.

$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$

$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$

Vậy $y_{\max}=4$.

---------------------------

Mặt khác:

$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$

$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$

$=(1+\sin x)(3-\sin x)$

Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$

$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$

Vậy $y_{\min}=0$

NV
12 tháng 7 2020

1. Ta có: \(-1\le sinx\le1\)

\(\Rightarrow-3\le y\le3\) (hàm đã cho đồng biến trên \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)

\(y_{min}=-3\) khi \(sinx=-1\)

\(y_{max}=3\) khi \(sinx=1\)

2.

\(y=1-sin^2x-2sinx=2-\left(sinx+1\right)^2\)

Do \(-1\le sinx\le1\Rightarrow0\le sinx+1\le2\)

\(\Rightarrow-2\le y\le2\)

\(y_{min}=-2\) khi \(sinx=1\)

\(y_{max}=2\) khi \(sinx=-1\)

3.

\(y=1-cos^2x+cos^4x=\left(cos^2x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow y\ge\frac{3}{4}\Rightarrow y_{min}=\frac{3}{4}\) khi \(cos^2x=\frac{1}{2}\)

\(y=1+cos^2x\left(cos^2x-1\right)\le1\) do \(cos^2x-1\le0\)

\(\Rightarrow y_{max}=1\) khi \(\left[{}\begin{matrix}cos^2x=1\\cos^2x=0\end{matrix}\right.\)

4.

\(y=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2+sinx.cosx\)

\(y=1-\frac{1}{2}sin^22x+\frac{1}{2}sin2x\)

\(y=\frac{9}{8}-\frac{1}{2}\left(sinx-\frac{1}{2}\right)^2\le\frac{9}{8}\)

\(y_{max}=\frac{9}{8}\) khi \(sinx=\frac{1}{2}\)

\(y=\frac{1}{2}\left(sinx+1\right)\left(2-sinx\right)\ge0;\forall x\)

\(\Rightarrow y_{min}=0\) khi \(sinx=-1\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

2.

$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$

$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$

Vì: $0\leq \sin ^22x\leq 1$

$\Rightarrow 1\geq 1-\frac{1}{2}\sin ^22x\geq \frac{1}{2}$

Vậy $y_{\max}=1; y_{\min}=\frac{1}{2}$

 

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

3.

$0\leq |\sin x|\leq 1$

$\Rightarrow 3\geq 3-2|\sin x|\geq 1$

Vậy $y_{\min}=1; y_{\max}=3$

NV
16 tháng 6 2019

Câu 1:

\(y=S\left(\frac{3-S^2}{2}\right)=\frac{3}{2}S-\frac{1}{2}S^3\)

Khi \(S\rightarrow+\infty\) thì \(y\rightarrow-\infty\)

Khi \(S\rightarrow-\infty\) thì \(y\rightarrow+\infty\)

Hàm số không có GTLN và GTNN

Câu 2:

\(y=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)

\(y=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)

\(y=1-\frac{1}{2}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{2}\) khi \(sin2x=\pm1\)

NV
16 tháng 6 2019

Câu 3:

\(y=sin^6x+cos^6x+3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\)

\(y=1-\frac{3}{4}sin^22x\)

Do \(0\le sin^22x\le1\)

\(\Rightarrow y_{max}=1\) khi \(sin2x=0\)

\(y_{min}=\frac{1}{4}\) khi \(sin2x=\pm1\)

Câu 4:

\(y=\frac{cosx+2sinx+3}{2cosx-sinx+4}\)

\(\Leftrightarrow2y.cosx-y.sinx+4y=cosx+2sinx+3\)

\(\Leftrightarrow\left(y+2\right)sinx+\left(1-2y\right)cosx=4y-3\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y+2\right)^2+\left(1-2y\right)^2\ge\left(4y-3\right)^2\)

\(\Leftrightarrow11y^2-24y+4\le0\)

\(\Leftrightarrow\frac{2}{11}\le y\le2\)

18 tháng 5 2017

a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).

14 tháng 1 2021

\(sinx+cosx=\sqrt{2}\)

\(\Leftrightarrow\left(sinx+cosx\right)^2=2\)

\(\Leftrightarrow sin^2x+cos^2x+2.sinx.cosx=2\)

\(\Leftrightarrow1+2.sinx.cosx=2\)

\(\Leftrightarrow2.sinx.cosx=1\)

Khi đó \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2.sinx.cosx=1^2-1=0\)