K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2022

Lời giải:

Thay vì dấu < thì dấu $\leq$ đúng hơn 

CMR: $(ax+by)^2\leq (a^2+b^2)(x^2+y^2)$

$\Leftrightarrow (a^2+b^2)(x^2+y^2)-(ax+by)^2\geq 0$

$\Leftrightarrow (a^2x^2+a^2y^2+b^2x^2+b^2y^2)-(a^2x^2+b^2y^2+2axby)\geq 0$

$\Leftrightarrow a^2y^2+b^2x^2-2axby\geq 0$

$\Leftrightarrow (ay-bx)^2\geq 0$ (luôn đúng) 

Vậy ta có đpcm.

Dấu "=" xảy ra khi $ay=bx$

31 tháng 3 2018

Nó là bđt bunyakovsky luôn rồi mà bạn,lên google sẽ có cách chứng minh

31 tháng 3 2018

Mk lên tra được câu a thôi

Bn giúp mk câu b đi

5 tháng 6 2019

Bất đẳng thức Cauchy-Schwarz ( Bunhiacopxki )

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+2abxy+b^2y^2\)

\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{x}{y}\)

5 tháng 6 2019

thanks bạn <3

7 tháng 4 2018

Đáng lẽ là bé hơn hoặc bằng

(ax + by)2 = a2x2 + 2axby + b2y2 

(a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2

Ta cần chứng minh:

\(2axby\le b^2x^2+a^2y^2\)'

\(\Leftrightarrow0\le b^2x^2-2aybx+a^2y^2\)

<=> 0 \(\le\)(bx - ay)2 (đúng)

Vậy bđt đc chứng minh

15 tháng 3 2017

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\Leftrightarrow a^2x^2+b^2c^2+a^2y^2+b^2y^2\ge a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2-a^2x^2-2axby-b^2y^2\ge0\Leftrightarrow a^2y^2-2axby+b^2x^2\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) luôn đúng!

Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)

8 tháng 11 2018

Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)

Từ ax+by+cz=0

=>(ax+by+cz)2=0

=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0

=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)

Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)

\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)

\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)

\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)

\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)

\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)

\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

4 tháng 1 2018

\(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)

\(\Rightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(axby+bycz+axcz\right)\)

Ta co

\(\dfrac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(z-x\right)^2+ab\left(x-y\right)^2}\)

\(=\dfrac{ax^2+by^2+cz^2}{bcy^2-2bcyz+bcz^2+acz^2-2aczx+acx^2+abx^2-2abxy+aby^2}\)

\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2-2\left(axby+bcyz+axcz\right)}\)

\(=\dfrac{ax^2+by^2+cz^2}{bcy^2+bcz^2+acz^2+acx^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2}\)

\(=\dfrac{ax^2+by^2+cz^2}{\left(acx^2+abx^2+a^2x^2\right)+\left(bcy^2+aby^2+b^2y^2\right)+\left(c^2z^2+acz^2+bcz^2\right)}\)

\(=\dfrac{ax^2+by^2+cz^2}{ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)}\)

\(=\dfrac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\dfrac{1}{a+b+c}\) ( dpcm)