cho biểu thức A= \(\frac{2x^2+4x}{x^3-4x}+\frac{x^2-4}{x^2+2x}+\frac{2}{2-x}\) (với x \(\ne\)0; x\(\ne\)-2; x\(\ne\)2
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A khi x=4
c) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này nó hơi khó 1 tí nên chú ý chút khác lên lever :>
a, \(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right):\frac{x+1}{x-2}\)ĐK : x khác 0 ; 2 ; -2
\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}-\frac{6-5x}{\left(2-x\right)\left(x+2\right)}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4x\left(x-2\right)}{MTC}+\frac{2x\left(x+2\right)}{MTC}+\frac{\left(6-5x\right)x}{MTC}\right):\frac{x+1}{x-2}\)
\(=\left(\frac{4x^2-8x+2x^2+4x+6x-5x^2}{MTC}\right):\frac{x+1}{x-2}\)
\(=\frac{x^2+2x}{x\left(x+2\right)\left(x-2\right)}.\frac{x-2}{x+1}=\frac{1}{x+1}\)
b, Ta có : \(x^2-2x=8\Leftrightarrow x^2-2x-8=0\)
\(\left(x-4\right)\left(x+2\right)=0\)<=> \(x=4;-2\)
TH1 : Thay x = 4 ta được : \(\frac{1}{4+1}=\frac{1}{5}\)
TH2 : Thay x = -2 ta được : ( ktmđkxđ )
\(A=\left(\frac{4x}{x^2+2x}+\frac{2}{x-2}-\frac{6-5x}{4-x^2}\right)\div\frac{x+1}{x-2}\)
a)\(=\left(\frac{4x}{x\left(x+2\right)}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\right)\times\frac{x-2}{x+1}\)
\(=\left(\frac{4\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)
\(=\left(\frac{4x-8+2x+4+6-5x}{\left(x-2\right)\left(x+2\right)}\right)\times\frac{x-2}{x+1}\)
\(=\frac{x+2}{\left(x-2\right)\left(x+2\right)}\times\frac{x-2}{x+1}\)
\(=\frac{1}{x+1}\)
b) x2 - 2x = 8
<=> x2 - 2x - 8 = 0
<=> x2 - 4x + 2x - 8 = 0
<=> x( x - 4 ) + 2( x - 4 ) = 0
<=> ( x - 4 )( x + 2 ) = 0
<=> x = 4 ( tm ) hoặc x = -2 ( ktm )
Với x = 4 ( tm ) => A = 1/5
Với x = -2 ( ktm ) => A không xác định
\(C=\left[\frac{x^2.\left(x^2-4\right)+4x^2}{x^2-4}\right].\left[\frac{x}{2.\left(x-2\right)}+\frac{2-2x}{x.\left(x^2-4\right)}.\frac{x^2-4}{x-2}\right]\)
\(C=\frac{x^4-4x^2+4x^2}{x^2-4}.\left[\frac{x}{2.\left(x-2\right)}+\frac{2-2x}{x\left(x-2\right)}\right]\)
\(C=\frac{x^4}{x^2-4}.\left[\frac{x^2}{2x.\left(x-2\right)}+\frac{\left(2-2x\right).2}{2x.\left(x-2\right)}\right]\)
\(C=\frac{x^4}{x^2-4}.\left[\frac{x^2+4-4x}{2x.\left(x-2\right)}\right]\)
\(C=\frac{x^4}{x^2-4}.\frac{\left(x-2\right)^2}{2x.\left(x-2\right)}\)
\(C=\frac{x^4}{\left(x-2\right).\left(x+2\right)}.\frac{\left(x-2\right).\left(x-2\right)}{2x.\left(x-2\right)}\)
\(C=\frac{x^3}{\left(x+2\right).2}\)
a) \(ĐKXĐ:x\ne\pm2\)
\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)
\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)
\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)
\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(\Leftrightarrow P=\frac{x+2}{x-2}\)
b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)
Loại \(x=-2\)
\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)
Vì P là số nguyên tố nên
\(P\in\left\{5;3;2\right\}\)
Vậy để P là số nguyên tố thì \(x\in\left\{3;4;6\right\}\)
Bài 1.
a)\(\frac{4x-4}{x^2-4x+4}\div\frac{x^2-1}{\left(2-x\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\div\frac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)^2}=\frac{4\left(x-1\right)}{\left(x-2\right)^2}\times\frac{\left(x-2\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{4}{x+1}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}=\frac{2x+1}{x\left(2x-1\right)}+\frac{-32x^2}{4x^2-1}+\frac{1-2x}{x\left(2x+1\right)}\)
\(=\frac{\left(2x+1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{\left(1-2x\right)\left(2x-1\right)}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-32x^3}{x\left(2x-1\right)\left(2x+1\right)}+\frac{-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{4x^2+4x+1-32x^3-4x^2+4x-1}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-32x^3+8x}{x\left(2x-1\right)\left(2x+1\right)}\)
\(=\frac{-8x\left(4x^2-1\right)}{x\left(2x-1\right)\left(2x+1\right)}=\frac{-8x\left(2x-1\right)\left(2x+1\right)}{x\left(2x-1\right)\left(2x+1\right)}=-8\)
c) \(\left(\frac{1}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x}{x^2-1}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\left(\frac{x-1+x+1+2x}{\left(x-1\right)\left(x+1\right)}\right)\times\frac{x-1}{4x}\)
\(=\frac{4x}{\left(x-1\right)\left(x+1\right)}\times\frac{x-1}{4x}=\frac{1}{x+1}\)
Bài 3.
N = ( 4x + 3 )2 - 2x( x + 6 ) - 5( x - 2 )( x + 2 )
= 16x2 + 24x + 9 - 2x2 - 12x - 5( x2 - 4 )
= 14x2 + 12x + 9 - 5x2 + 20
= 9x2 + 12x + 29
= 9( x2 + 4/3x + 4/9 ) + 25
= 9( x + 2/3 )2 + 25 ≥ 25 > 0 ∀ x
=> đpcm