Chứng minh rằng : A= (x+2016).(x+2017) chia hết cho 2,với mọi x thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp
...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp
mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2
mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập
CHÚC MAY MẮN
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3
Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )
=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N
Tk mk nha
b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2
=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)
Mà 20172018 không chia hết cho 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
Xét n chẵn => n(n+13) chẵn nên chia hết cho 2
Xét n lẻ => n+13 chẵn => n(n+13) chẵn nên chia hết cho 2
chúc bạn học tốt
^_^ !
(n + 2016).(n + 2017) - n2 - n
= (n + 2016).(n + 2017) - (n2 + n)
= (n + 2016).(n + 2017) - n(n + 1)
Vì (n + 2016).(n + 2017) và n(n + 1) là tích 2 số tự nhiên liên tiếp nên nó chia hết cho 2
Theo tính chất => (n + 2016).(n + 2017) - n2 - n chia hết cho 2 ( đpcm )
ta có x+2016 và x+2017 là 2 số liên tiếp
=> 1 trong 2 số có 1 số chia hết cho 2
nên A=(x+2016)(x+2017) chia hết cho 2