K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

        \(\frac{a}{b}

30 tháng 5 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{db}\)

mà  \(\frac{ad}{bd}\) và \(\frac{cb}{db}\) chung mẫu

\(\Rightarrow\) ad < bc 

Ngược lại tương tự nhé. 

chúc bạn học tốt

Bài 1: Các câu sau, câu nào đúng,câu nào sai?

a) Mọi số hữu tỉ dương đều lớn hơn 0      Đ

b) Nếu a là số hữu tỉ âm thì a là số tự nhiên       S

c) Nếu a là số tự nhiên thì a là số hữu tỉ âm            S

d) 0 là số hữu tỉ dương                             S

 a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:
Bạn chú ý lần sau gõ đề bài bằng công thức toán. Việc gõ đề thiếu/ sai/ không đúng công thức khiến người sửa rất mệt.

a) Theo hằng đẳng thức đáng nhớ:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)}\)

\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2(a+b+c)}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-0}\) (do $a+b+c=0$)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

b) Theo điều kiện đề bài:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2}{b^2c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2+2bc}{b^2c^2}-\frac{2}{bc}}\)

\(=\sqrt{\frac{1}{(b+c)^2}+(\frac{b+c}{bc})^2-\frac{2}{bc}}=\sqrt{(\frac{1}{b+c}-\frac{b+c}{bc})^2}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\)

\(a,b,c\in\mathbb{Q}\Rightarrow \)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\in\mathbb{Q}\)

Ta có đpcm.

11 tháng 8 2018

Ta có: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2+2.\frac{c+b-a}{abc}\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)    (vì: a=b+c)

\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)

Do a,b,c là các số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\) là 1 số hữu tỉ

=.= hok tốt!!

29 tháng 8 2016

đụ mẹ bọn online math

29 tháng 8 2016
J vậy bạn
23 tháng 6 2019

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\left(\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2}{bc}}=\sqrt{\frac{1}{a^2}+\left(\frac{b+c}{bc}\right)^2-\frac{2}{bc}.}\)

\(=\sqrt{\frac{1}{a^2}+\frac{a^2}{b^2c^2}-\frac{2}{bc}}=\sqrt{\left(\frac{1}{a}-\frac{a}{bc}\right)^2}\)\(=\left|\frac{1}{a}-\frac{a}{bc}\right|\)

Do a,b,c là các số hữu tỉ => đpcm

23 tháng 6 2019

Ta có 

\(\frac{1}{a^2\:}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}-\frac{1}{b\:}-\frac{1}{c}\right)^2\)2.    + \(2\left(\frac{1}{ab}+\frac{1}{ac}-\frac{1}{bc}\right)\)

\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)\(2.\frac{c+b-a}{abc}\)\(=\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2\)(Vì a=b+c)

Từ đó suy ra 

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)\(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\)\(=|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)Vì a,b,c là số hữu tỉ khác 0 nên \(|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}|\)là một số hữu tỉ

=> đpcm

23 tháng 9 2019

Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath

20 tháng 7 2019

\(\frac{a}{b}\)<\(\frac{c}{d}\)

=> \(\frac{ad}{bd}\)<\(\frac{bc}{bd}\)(tích chéo)

=> ad<bc(điều phải chứng minh)

t.i.c.k cho a nha

a) ta có \(\frac{a}{b}=\frac{ad}{bd}\)cả tử và mẫu với d >0

            \(\frac{c}{d}=\frac{cb}{bd}\)cả tử và mẫu với b >0

vì \(\frac{a}{b}< \frac{c}{d}\)nên \(\frac{ab}{bd}< bc,db\Rightarrow ad< bc\)vì tích bd >0

29 tháng 7 2017

\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+ab< bc+ab\)\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

\(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow ad< bc\)\(\Rightarrow ad+cd< bc+cd\)\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

23 tháng 6 2018

Có \(\frac{a}{b}< \frac{c}{d}\left(b,d>0\right)\)

\(\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (vì b, b + d > 0) (1)

Có \(ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (vì b + d, d > 0) (2)

Từ (1)(2) => \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)