K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1) Cho tam giác ABC, vẽ hai trung tuyến BM và CN. Trên tia đối của tia MB và NC lần lượt lấy 2 điểm D và E sao cho MD=MB và NC=NEa) Chứng minh: ABCD là hình bình hành b) Chứng minh: A là trung điểm của ED c) Tam giác ABC phải thõa mãn điều kiện gì để BCDE là hình thang cân Bài 2)  Cho hình thoi ABCD, gọi O là giao điểm của 2 đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C...
Đọc tiếp

Bài 1) Cho tam giác ABC, vẽ hai trung tuyến BM và CN. Trên tia đối của tia MB và NC lần lượt lấy 2 điểm D và E sao cho MD=MB và NC=NE

a) Chứng minh: ABCD là hình bình hành 

b) Chứng minh: A là trung điểm của ED 

c) Tam giác ABC phải thõa mãn điều kiện gì để BCDE là hình thang cân 

Bài 2)  Cho hình thoi ABCD, gọi O là giao điểm của 2 đường chéo. Vẽ đường thẳng qua B và song song với AC, vẽ đường thẳng qua C và song song với BD, 2 đường thẳng đó cắt nhau ở K 

a) Tứ giác OKBC là hình gì? Vì sao?

b) CMR: AB=OK 

c) Tìm điều kiện của hình thoi ABCD để tứ giác OBKC là hình vuông 

Bài 3) Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của AB,BC,CD,DA

a) Chứng minh E F G H là hình bình hành 

b) Các đường chéo AC,BD của tứ giác ABCD có điều kiện gì thì EFGH là hình chữ nhật, hình thoi,hình vuông?

Bài 4) a) Cho hình thoi ABCD. Kẻ 2 đường cao AH,AK. Chứng minh rằng: AH=AK

b) Hình bình hành ABCD có 2 đường cao AH=AK Chứng minh rằng ABCD là hình thoi 

Mọi người giúp với ạ mình đang ôn tập đề cương .........

2
12 tháng 11 2017

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

31 tháng 12 2018

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

a:Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó:ABCD là hình bình hành

b: Xét tứ giác AEBC có 

N là trung điểm của AB

N là trung điểm của CE

Do đó:AEBC là hình bình hành

SUy ra: AE//BC và AE=BC

=>AE=AD
Ta có: AE//BC

AD//BC

mà AE,AD có điểm chung là A

nên A,E,D thẳng hàng

mà AD=AE

nên A là trung điểm của DE

a: Sửa đề: ΔABC cân tại A

Xét ΔABM và ΔACN có

AB=AC

góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Xét ΔACB có

BM,Cn là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

mà BM=CN

nên BG=CG

b: BG=2/3BM

=>BG=2GM

=>BG=GD

=>G là trung điểm của BD và BD=2BG

CG=2/3CN

=>CG=2GN

=>CG=GE

=>G là trung điểm của CE và CE=2CG

CE=2CG

BD=2BG

mà CG=BG

nên CE=BD

Xét tứ giác BCDE có

G là trung điểm chung của BD và CE

CE=BD

=>BCDE là hình chữ nhật

2 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hbh

Do đó \(AD=BC;AD\text{//}BC\left(1\right)\)

Vì N là trung điểm AB và CE nên ACBE là hbh

Do đó \(AE=BC;AE\text{//}BC\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow AD=AE\)

\(b,\left(1\right)\left(2\right)\Rightarrow AD\text{ trùng }AE\Rightarrow A,D,E\text{ thẳng hàng}\)

2 tháng 12 2021

 "hbh" là gì vậy bạn

2 tháng 12 2021

Tham khảo

 

a) Xét △ADM△ADM và △CBM△CBM ta có :

MD = MB (gt)

ˆM1=ˆM2M1^=M2^ (2 góc đối đỉnh)

AM = CM (gt)

=> △ADM=△CBM△ADM=△CBM (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Xét △AEN△AEN và △BCN△BCN ta có :

AN = BN (gt)

ˆN1=ˆN2N1^=N2^ (2 góc đối đỉnh)

EN = CN (gt)

=> △AEN=△BCN△AEN=△BCN (c.g.c)

=> AE = BC (2 cạnh tương ứng) (2)

Từ (1) và (2) => AD = AE

b) Ta có : △ADM=△BCM△ADM=△BCM (CMT)

=> ˆADM=ˆBCMADM^=BCM^ (2 góc tương ứng)

Mà ˆADMADM^ và ˆBCMBCM^ là 2 góc so le trong

=>AD // BC (dấu hiệu nhận biết 2 đường thẳng song song) (3)

Ta có : △AEN=△BCN△AEN=△BCN (CMT)

=> ˆAEN=ˆBCNAEN^=BCN^ (2 góc tương ứng)

=> Mà ˆAENAEN^ và ˆBCNBCN^ là 2 góc so le trong

=> AE // BC (dấu hiệu nhận biết 2 đường thẳng song song) (4)

Từ (3) và (4) => A,D,EA,D,E thẳng hàng (theo tiên đề Ơ-clit)

8 tháng 7 2018

chữ thấy ghê

a) Xét ΔAME và ΔCMB có 

MA=MC(gt)

\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)

ME=MB(gt)

Do đó: ΔAME=ΔCMB(c-g-c)

Suy ra: AE=CB(hai cạnh tương ứng)(1)

Xét ΔANF và ΔBNC có 

NA=NB(gt)

\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)

NF=NC(gt)

Do đó: ΔANF=ΔBNC(c-g-c)

Suy ra: AF=BC(Hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra AE=AF(đpcm)

b) Ta có: ΔAME=ΔCMB(cmt)

nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: ΔANF=ΔBNC(cmt)

nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Ta có: AE//BC(cmt)

mà AF//BC(cmt)

và AE,AF có điểm chung là A

nên A,E,F thẳng hàng(đpcm)

4 tháng 5 2020

Bài này bạn tự kẻ hình giúp mình nha!

1. Xét tam giác AMB và tam giác CMD có:

AM = CM ( M là trung điểm của AC )

AMB = CMD ( 2 góc đối đỉnh )

BM = DM (gt)

=> tam giác AMB = tam giác CMD (c.g.c) (dpcm)

=> BAM = DCM ( 2 góc tương ứng)

=> DCM = 90o  => DC vuông góc với MC hay CD vuông góc với AC ( dpcm )

2. 

Xét tam giác AMD và tam giác CMB có:

AM = CM ( Theo 1.)

AMD = CMB ( 2 góc đối đỉnh )

DM = BM (gt)

=> tam giác AMD = tam giác CMB ( c.g.c)

=> AD = BC (2 cạnh tương ứng) (dpcm)

=> ADM = CBM (2 góc tương ứng)

Mà góc ADM và và góc CBM ở vị trí so le trong

=> AD // BC (dpcm)

3. Xét tam giác AEN và tam giác BCN có:

AN=BN ( N là trung điểm của AB)

ANE = BNC ( 2 góc đối đỉnh )

NE = NC (gt)

=> Tam giác AEN = tam giác BCN ( c.g.c)

=> AE = BC ( 2 cạnh tương ứng )        (1)

=>  EAN = CBN ( 2 góc tương ứng ) mà EAN và CBN ở vị trí so le trong => AE // BC         (2)

Theo 2. ta có :  +) AD=BC        (3)

                         +) AD // BC      (4)

Từ (1) và (3) Suy ra AE = AD  (5)

Từ (2) và (4) Suy ra A,E,D thẳng hàng    (6)

Từ (5) và (6) Suy ra A là trung điểm của ED (dpcm)

5 tháng 5 2020

sorry bn nha

mk lm xong rùi