K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2022

điều kiện \(\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)

Ta thấy \(2\sqrt{x}\ge0\) với mọi \(\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)

Nên để \(A< 0\) thì \(x-2< 0\) \(\Leftrightarrow x< 2\)

Như vậy để \(A< 0\) thì \(0\le x< 2\)

a: ĐKXĐ: x>0; x<>1

\(Q=\dfrac{x+\sqrt{x}+\sqrt{x}}{x-1}:\dfrac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-1}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{2\sqrt{x}+x}\)

\(=\dfrac{x}{\sqrt{x}-1}\)

b: Q>2

=>Q-2>0

=>\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)

=>căn x-1>0

=>x>1

29 tháng 7 2023

a) ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(Q=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{2\left(\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}-\dfrac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x\left(\sqrt{x}+1\right)}{x+2\sqrt{x}}\)

\(=\dfrac{x}{\sqrt{x}-1}\)

b) Q>2 <=> \(\dfrac{x}{\sqrt{x}-1}>2\Leftrightarrow x>2\sqrt{x}-2\)

\(\Leftrightarrow x-2\sqrt{x}+2>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+1>0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1\le0\\\sqrt{x}-1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le1\end{matrix}\right.\)

KL:.....

a: \(P=1:\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{3x}{2\left(x-4\right)}+\dfrac{2}{2\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{1}{4-2\sqrt{x}}\)

\(=1:\left(\dfrac{2\left(\sqrt{x}-2\right)-3x+2\sqrt{x}+4}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)

\(=1:\dfrac{2\sqrt{x}-4-3x+2\sqrt{x}+4}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)

\(=\dfrac{2\left(x-4\right)}{-3x+4\sqrt{x}}\cdot\dfrac{1}{2\left(2-\sqrt{x}\right)}\)

\(=\dfrac{\sqrt{x}+2}{3x-4\sqrt{x}}\)

b: Để P=20 thì \(\sqrt{x}+2=60x-80\sqrt{x}\)

\(\Leftrightarrow60x-81\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=a\)

Pt sẽ là \(60a^2-81a-2=0\)

\(\text{Δ}=\left(-81\right)^2-4\cdot60\cdot\left(-2\right)=7041>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}a_1=\dfrac{81-\sqrt{7041}}{120}\left(loại\right)\\a_2=\dfrac{81+\sqrt{7041}}{120}\left(nhận\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\left(\dfrac{81+\sqrt{7041}}{120}\right)^2\)

a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)

b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)

\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)

c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

\(P=\dfrac{A}{B}=\sqrt{x}+1\)

P<7/4

=>căn x<3/4

=>0<x<9/16

NV
16 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)

\(M=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(M=\dfrac{-8\sqrt{x}}{x-4}\)

\(M< 0\Leftrightarrow-\dfrac{8\sqrt{x}}{x-4}< 0\Leftrightarrow x-4>0\Leftrightarrow x>4\)

11 tháng 10 2021

\(a,A=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\\ b,x=36\Leftrightarrow A=\dfrac{6}{6-2}=\dfrac{6}{4}=\dfrac{3}{2}\\ c,A=-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}=-\dfrac{1}{3}\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\\ \Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\\ d,A\in Z\Leftrightarrow1+\dfrac{2}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\\ \Leftrightarrow x\in\left\{0;1;9;16\right\}\)

\(e,A:B=\dfrac{\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}+1}=-2\\ \Leftrightarrow\sqrt{x}=-2\sqrt{x}-2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{3}\left(ktm\right)\\ \Leftrightarrow x\in\varnothing\)

11 tháng 10 2021

a: Ta có: \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)