Chứng minh rằng hai số 2012^100 - 1 và 2012^100+1không đồng thời là số nguyên tố
giúp mik với mình cần gấp bạn nào làm đc mik tặng 5like
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp 2017100 - 1, 2017100, 2017100 + 1
=> Trong 3 số phải có 1 số chia hết cho 3
Mà 2017100 không chia hết cho 3 (vì 2017 không chia hết cho 3)
=> 2017100 - 1 hoặc 2017100 + 1 chia hết cho 3
=> 2017100 - 1 hoặc 2017100 + 1 là hợp số
=> 2017100 - 1 và 2017100 + 1 không thể đồng thời là hai số nguyên tố.
có 2017^100-1=2017^4.25-1
=(...1)-1
=(...0) chia hết cho 2
có 2017^100+1=2017^4.25+1
=(...1)+1
=(...2) chia hết cho 2
vì 2 số đều chia hết cho 2 suy ra 2017^100-1 và 2017^100+1 không thể đồng thời là 2 số nguyên tố
chúc bạn học tốt !
Chứng minh
b) Thiếu đề với p>3. nhé!. Vì p=3 thì p+100=103 là số nguyên tố
p là số nguyên tố nên có dạng 3k+1, 3k+2, thuộc N
Với p=3k+1 => p+8=3k+9 \(⋮3\)loại vì p+8 là số nguyen tố
Với p=3k+2=> p+100=3k+2+100=3k+102 =3(k+34) chia hết cho 3
=> p+100 là hợp số.
Bài 1:
+Nếu p = 2 ⇒⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒⇒ p không chia hết cho 5 ⇒⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm
Bài 2:
ta có: p + 8 là số nguyên tố
=> p > 3
mà p là số nguyên tố
=> p được viết dưới dạng: 3k+1; 3k+2
nếu p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 chia hết cho 3 ( vô lí, p + 8 sẽ không là số nguyên tố ( đầu bài cho)) (Loại)
nếu p = 3k + 2 => p + 100 = 3k + 2 + 100 = 3k + 102 chia hết cho 3
=> p + 100 là hợp số (đpcm)
Có : 7^2012 = 7^4.503 = (7^4)^503 = (...1)^503 = ....1 ( số ...1 có gạch ngang trên đầu nha ) => 7^2012^2014 = (...1)^2014 = ...1
3^92 = 3^4.23 = (3^4)^23 = (....1)^23 = ....1 => 3^92^94 = (....1)^2014 = ...1
=> B = 1/2 . (....1 - ....1 ) = 1/2 . (....0)
=> B có tận cùng là 5 hoặc 0 => B chia hết cho 5 (ĐPCM)
Ta có thể thấy 11 số bất kì trong các số đó tổng của các số đó là 1 số nguyên âm
=>Vậy ta có :
100:11=9(Dư 1)
=>Ta có 9 tổng đều là số nguyên
=>Vậy 100 số đó là số nguyên âm
Ta có phép chia:
100 : 11 = 9 (dư 1)
Gọi các số đó là a1; a2; a3;...;a100
Giả sử tất cả đều là số nguyên dương thì tổng của 11 số bất kì là 1 số nguyên dương (Trái với điều kiện đề bài)
Do đó có ít nhất 1 số là số nguyên âm
Vì vai trò của các số là như nhau nên giả sử a100 (số bị dư ra ở phép chia bước đầu) là số nguyên âm (1)
Đặt A = a1 + a2 + a3 +...+ a100
A = {(a1 + a2 + a3 +...+ a11) + (a12 + a13 + a14 +...+ a22) +...+ (a89 + a90 + a91 + a92 +...+ a99)} + a100 (Vì dư ra 1 số)
9 cặp số
Vì tổng của 11 số bất kì là số nguyên âm nên tổng của 9 cặp số là số nguyên âm (Vì âm + âm = âm)
Mà a100 là số nguyên âm (Theo (1))
Từ 2 điều trên => A là số nguyên âm (ĐPCM)
Vậy...
Mà a100 là số nguyên âm
Ta có:2017100=20174.25=...125=..1
Nên 2017100-1=...1-1=..0 chia hết cho 2(là hợp số)
2017100+1=..1+1=..2 chia hết cho 2(là hợp số)
Vậy 2017100-1&2017100+1 không là số nguyên tố(đpcm)
* 1994 chia 1993 dư 1 => 1994^100 chia 1993 dư 1
=> 1994^100 - 1 chia hết cho 1993
hiển nhiên 1994^100 > 1993
=> 1994^100 - 1 là hợp số
* ta cũng có thể dùng khai triển nhị thức:
1994^100 - 1 = (1994-1)(1994^99 + 1994^98 + ... + 1)
=> 1994^100 - 1 là hợp số
--------------
tôi nghĩ chỉ cần cm một trong hai số là hợp số là xong, tuy nhiên như thế thì đề đưa ra 1994^100 + 1 để làm gì???
có lẽ ý người ra đề muốn giải theo cách khác!!!
1994^100 -1; 1994^100; 1994^100 +1 là 3 số tự nhiên liên tiếp, nên có 1 số chia hết cho 3
mà 1994 không chia hết cho 3 => 1994^100 không chia hết cho 3
=> trong 1994^100-1 và 1994^100+1 phải có 1 số chia hết cho 3 => chúng không đồng thời là số nguyên tố
vì p là 1 số nguyên tố, nên 8p là hợp số.
mà 8p+1 va 8p-1 là 2 số hơn kém nhau 2 đv, 8p+1 và 8p-1 là 2 số lẻ.
do đó: 8p+1 và 8p-1 sẽ không đồng thời là số nguyên tố.
vậy 8p-1 và 8p+1 không đồng thời là số nguyên tố.
- Nếu p = 3 thì: 8p + 1 = 8.3 + 1 = 25, 25 chia hết cho 5 nên 8p + 1 không là số nguyên tố.
- Nếu p không chia hết cho 3 thì 8p cũng chia hết cho 3.
Ta có 8p -1; 8p ; 8p + 1 là số tự liên tiếp nên sẽ có một số chia hết cho 3. Do 8p không chia hết cho 3 nên 8p -1 hoặc 8p + 1 chia hết cho 3.
chúc bạn học tốt
Bạn có thể tham khảo câu trả lời từ câu hỏi của trương quang lộc nhé