Cho 3 cạnh tam giác tỉ lệ với 2;5;9. Tính độ dài mỗi cạnh biết cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài 3 cạnh của tam giác đó là x;y;z (x;y;z >0; x:y:z=2:3:4 ) ; 3 chiều cao tương ứng là a;b;c
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=t\)
=> x = 2t ; y = 3t ; z = at (1)
Gọi S là diện tích tam giác đó. Ta có :
2S = xa = yb = zc
Thay các giá trị ở (1) và ta được :
=> a.2t = b.3.t = c.4t
=> 2a = 3b = 4c
=> \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)
Vậy 3 chiều cao tương ứng 3 cạnh tam giác tỉ lệ với 6;4;3
Gọi 3 cạnh của tam giác là a; b; c và 3 đường cao lần lượt tương ứng là: ha; hb ; hc
=> a.ha = b.hb = c.hc (= 2 lần diện tích tam giác)
Theo bài cho: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)= k => a = 2k; b = 3k; c = 4k
Từ a.ha = b.hb = c.hc => 2k.ha = 3k.hb = 4k.hc => 2.ha = 3.hb = 4.hc => \(\frac{2h_a}{12}=\frac{3h_b}{12}=\frac{4h_c}{12}\)
=> \(\frac{h_a}{6}=\frac{h_b}{4}=\frac{h_c}{3}\)
vậy 3 đường cao tương ứng tỉ lệ với 6; 4; 3
Đặt AB=a; AC=b
Theo đề, ta có: a/3=b/4
Đặt a/3=b/4=k
=>a=3k; b=4k
Theo đề, ta có: 3k+4k+5k=36
=>12k=36
=>k=3
=>AB=9; AC=12; BC=15
gọi độ dài 3 cạnh của tam giác là a,b,c . 3 chiều cao tương ứng là x,y,z , diện tích của tam giác là S
Ta có : a = 2S/x, b = 2S/y , c = 2S/z
Do đó : từ a/2 = b/3 = c/4
\(\Rightarrow\)\(\frac{2S}{\frac{x}{2}}=\frac{2S}{\frac{y}{3}}=\frac{2S}{\frac{z}{4}}\)\(\Rightarrow\)\(\frac{1}{2x}=\frac{1}{3y}=\frac{1}{4z}\)\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Vậy chiều cao tương ứng tỉ lệ với 6,4,3
Gọi độ dài 3 cạnh là a,b ,c ; 3 chiều cao tương ứng là x , y , z ; diện tích là S
\(a=\frac{2S}{X}\)
\(b=\frac{2S}{y}\)
\(c=\frac{2S}{z}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{2S}{2x}=\frac{2S}{3y}=\frac{2S}{4z}\)
\(\Rightarrow2x=3y=4z\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Vậy x ; y ;z tỉ lệ với 6 , 4 ,3 hay 3 chiều cao tương ứng của 3 cạnh đó tỉ lệ với 6;4;3
Gọi 3 đường cao là a,b,c còn 3 cạnh là x,y,z
Ta có x/2=y/3=z/4 (giả thiết) và x.a=y.b=z.c (1) (dựa vào công thức tính diện tích tam giác)
x/2=y/3=z/4=k thì x=2k, y=3k, z=4k thay vào (1) ta được:
2k.a=3k.b=4k.c suy ra a/6=b/4=c/3 (chia cho 12k)
Vậy 3 đường cao tương ứng tỉ lệ 6,3,4
Gọi độ dài 3 cạnh của tam giác đó là \(x;y;z (x;y;z >0; x:y:z=2:3:4 )\) ; ba chiều cao tương ứng là \(a;b;c\)
Theo đề bài Đặt \(x=2t;y=3t;z=4t\)
Gọi S là diện tích tam giác đó
\(\Rightarrow2S=ax=by=cz\)
\(\Rightarrow a.2.t=b.3.t=c.4.t\)
\(\Rightarrow2a=3b=4c\)
\(\Rightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\)
Vậy ba chiều cao tương ứng tỉ lệ với \(6;4;3\)
Gọi độ dài của 3 cạnh lần lượt là x, y, z
Theo bài ra: \(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}\) và z - x = 14
Áp dụng tính chất của dãy số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{9}=\frac{z-x}{9-2}=\frac{14}{7}=2\)
=> x = 2 . 2 = 4
y = 5 . 2 = 10
z = 9 . 2 = 18
Vậy 3 cạnh của tam giác lần lượt là 4m; 10m; 18m