Cho tam giác ABC có góc B=60 độ, tia phân giác của góc A và góc C cắt BC ở D, cắt AB ở E và chúng cắt bhau tại O. Trên cạnh AC lấy điểm K sao cho AK=AE. Chứng minh:
a) CK=CD
b) góc OED+ góc ODE=60 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC
a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>K là trung điểm của BC
c: EA=EB
EA>AC
=>EB>AC
có A = 60 độ (gt)
suy ra c+b=180-60=120
mà c1=1/2 c:b1=1/2 b ( tích chất tia phân giác )
suy ra c1+b1=120:2=60
suy ra BOC = 180-60=120
B)
xét Tam giác BOE và BOF bằng nhau theo ( cạnh góc cạnh)
suy ra OB là tia phân giác ủa EOF
C: có Phân giác Ce và BD cắt Nhau tại O
mà AF cắt CE và BD tại O suy ra AF LÀ phân giác của góc BAC
từ đó suy ra OD=OE=OF ( tích chất của tia phân giác )
, hình thì m tự vẽ bố éo rảnh ngồi vẽ :))
a) Ta có \(\widehat{B_1}=\widehat{B_2};\widehat{C_1}=\widehat{C_2}\Rightarrow\widehat{B_1}+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-60^o}{2}=60^o\)
Vậy thì \(\widehat{BOC}=180^o-60^o=120^o\)
b) Xét tam giác BEO và BFO có:
BE = BF (gt)
BO chung
\(\widehat{B_1}=\widehat{B_2}\)
\(\Rightarrow\Delta BEO=\Delta BFO\left(c-g-c\right)\)
\(\Rightarrow\widehat{BOE}=\widehat{BOF}\) (Hai góc tương ứng)
Vậy OB là tia phân giác góc EOF.
c) Gọi K, H là chân đường cao hạ từ O xuống AB và AC
Do O là giao điểm của 3 đường phân giác nên OH = OK
Ta có \(\widehat{EAD}+\widehat{EOD}=60^o+\widehat{BOC}=60^o+120^o=180^o\)
\(\Rightarrow\widehat{AEO}+\widehat{ODK}=180^o\Rightarrow\widehat{OEH}=\widehat{ODK}\Rightarrow\widehat{HOE}=\widehat{KOD}\)
Vậy thì \(\Delta OEH=\Delta ODK\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow OE=OD\)