chứng tỏ rằng số A = n^2 + n + 1 konh chia het cho 15 voi moi so tu nhien n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a)
U(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
=> n + 1 \(\in\) {-15; -5; -3; -1; 1; 3; 5; 15}
=> n \(\in\) {-16; -6; -4; -2; 0; 2; 4; 14}
(Chú ý nếu chưa học số âm thì bỏ các số âm đi nhé)
1b) 12 / (n+5) là số tự nhiên thì n + 1 \(\in\) Ư(12)
Ư(12) = {1 ; 2; 3; 4; 6; 12}
=> n + 5 \(\in\) {1 ; 2; 3; 4; 6; 12}
=> n \(\in\) { 6 - 5; 12 - 5}
n \(\in\) { 1; 7}
2) (n + 3)(n + 6) xét 2 trường hợp của n
n chẵn => n + 6 chẵn => tích trên là số chẵn và chia hết cho 2
n lẻ => n + 3 chẵn => tích trên cũng là số chẵn và chia hết cho 2
Vậy trong mọi trường hợp tích trên đều là số chẵn và chia hết cho 2
aaaaa=10000a+1000a+100a+10a+a=a(10000+1000+100+10=111111a=15873.7.a
=>aaaaaa chia hết cho 7
a) aaaaaa = a . 111111 = a . 7 . 15873 chia hết cho 7
b) a = 3
c) Ta có
( n + 3 ) ( n + 6 ) = ( n + 3 ) n + ( n + 3 ) 6
= n2 + 3n + 6n + 18
= n2 + 9n + 18
= n2 + 9( n + 2 )
Ta xét
Nếu n = 2k thì
n2 là số chẵn => chia hết cho 2
n + 2 là số chẵn => 9( n + 2 ) chia hết cho 2
=> n2 + 9( n + 2 ) chia hết cho 2 ( 1 )
Nếu n = 2k + 1 thì
n2 là số lẻ
n + 2 là số lẻ => 9( n + 2 ) là số lẻ
Do lẻ + lẻ = chẵn nên n2 + 9( n + 2 ) chia hết cho 2 (2)
Từ (1) và (2) suy ra với mọi n thì ( n + 3 ) ( n + 6 ) chia hết cho 2
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
(+) với n là số lẻ => n = 2k
Thay vào ta có
n(n+3) = 2k (2k + 3) chia hết cho 2 với mọi n
(+) n là số lẻ => n = 2k + 1
thay vào ta có :
n(n+3) = (2k+ 1 )(2k+ 1 + 3 ) = ( 2k+ 1)( 2k + 4 ) = 2 ( k + 2 )( 2k + 1 ) luôn chia hết cho 2 với mọi n
VẬy n(n+3) luôn luôn chia hết cho 2
Ta có: n(n+3)=n(n+1+2)
=n(n+1)+2n
Ta thấy n(n+1) là 2 số tự nhiên liên tiếp nên luôn tồn tại một số chẵn chia hết cho 2=>n(n+1) chia hết cho 2
mà 2n cũng chia hết cho 2
=> n(n+3) chia hết cho 2 với mọi n tự nhiên
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N(đpcm)