K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

 Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N(đpcm)

17 tháng 7 2015

1a)

U(15) = {-15; -5; -3; -1; 1; 3; 5; 15}

=> n + 1 \(\in\) {-15; -5; -3; -1; 1; 3; 5; 15}

=> n \(\in\) {-16; -6; -4; -2; 0; 2; 4; 14}

(Chú ý nếu chưa học số âm thì bỏ các số âm đi nhé)

1b) 12 / (n+5) là số tự nhiên thì n + 1 \(\in\) Ư(12)

Ư(12) = {1 ; 2; 3; 4; 6; 12}

=> n + 5 \(\in\)  {1 ; 2; 3; 4; 6; 12}

=> n \(\in\) { 6 - 5; 12 - 5}

    n \(\in\) { 1; 7}

2) (n + 3)(n + 6) xét 2 trường hợp của n

n chẵn => n + 6 chẵn => tích trên là số chẵn và chia hết cho 2

n lẻ => n + 3 chẵn => tích trên cũng là số chẵn và chia hết cho 2

Vậy trong mọi trường hợp tích trên đều là số chẵn và chia hết cho 2

11 tháng 11 2015

aaaaa=10000a+1000a+100a+10a+a=a(10000+1000+100+10=111111a=15873.7.a

=>aaaaaa chia hết cho 7

11 tháng 11 2015

a) aaaaaa = a . 111111 = a . 7 . 15873 chia hết cho 7

b) a = 3

c) Ta có 

( n + 3 ) ( n + 6 ) = ( n + 3 ) n + ( n + 3 ) 6 

                           = n2 + 3n + 6n + 18

                           = n2 + 9n + 18

                          = n2 + 9( n + 2 )

Ta xét

Nếu n = 2k thì 

n2 là số chẵn => chia hết cho 2

n + 2 là số chẵn => 9( n + 2 ) chia hết cho 2

=> n2 + 9( n + 2 ) chia hết cho 2 ( 1 )

Nếu n = 2k + 1 thì 

n2 là số lẻ

n + 2 là số lẻ => 9( n + 2 ) là số lẻ

Do lẻ + lẻ = chẵn nên n2 + 9( n + 2 ) chia hết cho 2 (2)

Từ (1) và (2) suy ra với mọi n thì ( n + 3 ) ( n + 6 ) chia hết cho 2

30 tháng 7 2017

1. Ta có dãy chia hết cho 2 : 2,4,6,...,100

Có số ' số chia hết cho 2 là :

(100-2):2+1=50 số

Ta có dãy chia hết cho 5 : 5,10,15,...,100

Có số ' số chia hết cho 5 là :

(100-5):5+1=20 số

2.

- n là số lẻ nên suy ra n+7 là chẵn

=> (n+4)(n+7) là số chẵn

- n là số chẵn suy ra n+4 là chẵn

=> (n+4)(n+7) là số chẵn

Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .

=> đpcm

9 tháng 10 2016

Chia 2 trường hợp là n = 2k hoặc n = 2k+1

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

9 tháng 8 2015

(+) với n là số lẻ => n = 2k 

Thay vào ta có 

n(n+3) = 2k (2k + 3) chia hết cho 2 với mọi n 

(+) n là số lẻ => n = 2k + 1 

thay vào ta có :

n(n+3) = (2k+  1 )(2k+ 1 + 3 ) = ( 2k+  1)( 2k + 4 ) = 2 ( k  + 2 )( 2k + 1 ) luôn chia hết cho 2 với mọi n 

VẬy n(n+3) luôn luôn chia hết cho 2 

 

9 tháng 8 2015

Ta có: n(n+3)=n(n+1+2)

                   =n(n+1)+2n

 Ta thấy n(n+1) là 2 số tự nhiên liên tiếp nên luôn tồn tại một số chẵn chia hết cho 2=>n(n+1) chia hết cho 2

mà 2n cũng chia hết cho 2

=> n(n+3) chia hết cho 2 với mọi n tự nhiên