Chứng minh rằng với mọi n(lẻ) thì 4n+15Xn-1 chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
phân tích n^2+4n+8=(n+1)(n+3)
vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)
=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)
=4.(k+1)(k+2)
(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2
=>4.(k+1)(k+2)\(⋮\)8
Ta có:
n2 + 4n + 5
= n2 - 1 + 4n + 6
= (n - 1).(n + 1) + 2.(2n + 3)
Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp
=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8
=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8
=> n2 + 4n + 5 không chia hết cho 8
=> đpcm
Ủng hộ mk nha ^-^
a, n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4
=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1)
vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8
và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8
vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)
b, n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)
=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8 ) (1)
vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6
và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2 => 3(n-1)(n+1)*6
=> n(n-1)(n+1) + 3(n-1)(n+1) *6 (2)
từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48
vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48
Ta có : \(n^2+4n+5=\left(n+2\right)^2+1\)
Giả sử \(\left(n+2\right)^2+1\) \(⋮8\)
Ta có n lẻ => n+2 lẻ => (n+2)2 lẻ
Vì (n+2)2 là số chính phương lẻ nên chia 8 chỉ dư 1
<=> ( n+2)2 chia 8 dư 1
=> (n+2)2 + 1 chia 8 dư 2 => mâu thẫn với giả sử => điều giả sư sai => n2 + 4n + 5 không chia hết cho 8 ( đpcm)
a) Gọi 3 số nguyên liên tiếp là \(x -1 ; x ; x + 1 .\)
Ta có : (x - 1)3 + x3 + (x + 1)3
= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)
= 3x3 - 3x(x - 1 - x - 1)
= 3x3 + 6x
= 3x3 - 3x + 9x
\(= 3(x - 1)x(x + 1) +9x\)
Vì \((x - 1)x(x + 1) \) chia hết cho 3 nên \(3(x - 1)x(x + 1)\) chia hết cho 9
Vì 9 chia hết cho 9 nên 9x chia hết cho 9
\(\Rightarrow\) \(3(x - 1)x(x + 1) + 9x\) chia hết cho 9
\(\RightarrowĐPCM\)