tìm số tự nhiên k sao cho 3k-1chia hết cho k-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
Đặt \(10^k-1=19n\left(n\in Nsao\right)\)
\(\Rightarrow10^k=19n+1\Rightarrow\left(10^k\right)^3=\left(19n+1\right)^3\Rightarrow10^{3k}-1=\left(19n\right)^3+38n\)
Ta thấy\(\left(19n\right)^3⋮19;38n⋮19\Rightarrow\left(19n\right)^3+38n⋮19\)
Hay\(10^{3k}-1⋮19\)
Bài giải
Ta có 3k + 4 \(⋮\)k - 1
=> 3(k - 1) + 7 \(⋮\)k - 1
Vì 3(k - 1) \(⋮\)k - 1
Nên 7 \(⋮\)k - 1
Vì 7 \(⋮\)k - 1
Suy ra k - 1 \(\in\)Ư(7)
Ư(7) = {1; 7}
Suy ra k - 1 = 1 hay 7
k = 1 + 1 hay 7 + 1
k = 2 hay 8
Vậy k = 2 hay k = 8
\(\Rightarrow\left(n^2+n+2n+2-1\right)⋮\left(n+1\right)\\ \Rightarrow\left[n\left(n+1\right)+2\left(n+1\right)-1\right]⋮\left(n+1\right)\\ \Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\\ \Rightarrow n=0\)
câu 1:ta có số 975 chia hết cho 65 và lớn nhất
ta có:975/65=15
lại có thương=số dư suy ra số dư =15
suy ra số cần tìm là 975+15=990
Vậy số cần tìm là 990
câu 2 =4
câu 3 = 3
tick đi mình cho lời giải chi tiết
n^2 - 1 chia hết cho 2 và 5 thì phải có tận cùng là 0
=> n^2 có tận cùng là 1
mà n^2 là số chính phương
=> n^2 thuộc {81;121;...}
mà đề bài yêu cầu tìm n nhỏ nhất nên n^2 phải nhỏ nhất = 81
=> n =9
Vậy n = 9 nhỏ nhất để n^2 - 1 chia hết cho 2 và 5
Dùng phép quy nạp toán học (lớp 6)
Với k = 0: \(2^{3k+1}+5=2^1+5=7⋮7\Rightarrow\)Mệnh đề đúng với k = 1(1)
Giả sử điều đó đúng với k = t tức là \(2^{3t+1}+5⋮7\)(đây là giả thiết qui nạp) (2)
Ta sẽ c/m điều đó cũng đúng với k = t + 1.Tức là c/m:
\(2^{3\left(t+1\right)+1}+5⋮7\)hay \(2^{3t+4}+5⋮7\)
Ta có: \(2^{3t+4}+5=2^3\left(2^{3t+1}+5\right)-35\)
Dễ dàng thấy: \(2^3\left(2^{3t+1}+5\right)⋮7\) (do giả thiết qui nạp)
\(35⋮7\) (hiển nhiên)
Suy ra \(2^3\left(2^{3t+1}+5\right)-35⋮7\)hay \(2^{3t+4}+5⋮7\) hay \(2^{3\left(t+1\right)+1}+5⋮7\) (3)
Từ (1);(2) và (3) theo nguyên lí quy nạp toán học,ta có điều phải c/m
\(2^{3k+1}+5=2^{3k}.2+5=8^k.2+5\)
Ta có: 8 chia 7 dư 1 => \(8^k\)chia 7 dư 1 (vì (7,8)=1)
Đặt: \(8^k\)=7t+1
=> \(2^{3k+1}+5=\)(7t+1).2+5=7t.2+7 chia hết cho 7
3k-1 chia hết cho k-2
suy ra: 3k-6+5 chia hết cho k-2
(3k-6)+5 chia hết cho k-2
3*(k-2) +5 chia hết cho k-2
vì k-2 chia hết cho k-2 (k thuộc N). Nên 3*( k-2) chia hết cho k-2 (k thuộc N)
mà 3*(k-2) +5 chia hết cho k-2 (k thuộc N)
Nên 5 chia hết cho k-2
Tự giải tiếp nha
3k-1 chia hết cho k-2
3k(k-2)-1 chia hết cho k-2
3k(k-2)-5chia hết cho k-2
vì 3k(k-2) chia hết cho k-2
suy ra 5 chia hết cho k-2
k-2 thuộc Ư(5)={1;5)
ta có:
k-2=1
k=1+2
k=3
ta có:
k-2=5
k=5+2
k=7
suy ra k thuộc {3;7}