Cho a,b,c thỏa mãn \(\hept{\begin{cases}a+\frac{2}{b}=b+\frac{2}{c}=c+\frac{2}{a}\\abc\ne0\end{cases}}\)
Chứng minh :\(|abc|=2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Chúc bạn học tốt !!!
Ta có:
\(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\)
\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{x+y}{-a-b}\)
\(\Leftrightarrow x\left(b^2+2ab\right)+y\left(a^2+2ab\right)=0\left(1\right)\)\
Ta cần chứng minh:
\(xa^2+yb^2=\left(x+y\right)c^2\)
\(\Leftrightarrow xa^2+yb^2=\left(x+y\right)\left(a+b\right)^2\)
\(\Leftrightarrow x\left(b^2+2ab\right)+y\left(a^2+2ab\right)=0\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
Đặt x = 1/a ; y = 1/b, z = 1/c với x,y,z > 0
đk <=> 1/x + 1/y + 1/z = 1/(xyz)
<=> xy + yz + zx = 1
A = √[yz/(1+x²)] + √[zx/(1+y²)] + √[xy/(1+z²)]
Ta có:
1 + x² = x² + xy + yz + zx = (x+z)(x+y)
=> √[yz/(1+x²)] = √[y/(x+y)] . √[z/(x+z)]
≤ 1/2 . [y/(x+y) + z/(x+z)] (1)
(áp dụng bđt Cosi: √m .√n ≤ 1/2 . (m+n))
Tương tự:
√[xz/(1+y²)] = √[x/(x+y)] . √[z/(y+z)] ≤ 1/2 . [x/(x+y) + z/(y+z)] (2)
√[xy/(1+z²)] = √[y/(z+y)] . √[x/(x+z)] ≤ 1/2 . [y/(z+y) + x/(x+z)] (3)
Cộng vế của (1),(2) và (3) lại ta được:
A ≤ 1/2 . 3 = 3/2
Vậy Max A = 3/2 xảy ra <=> x = y = z = 1/√3 <=> a = b = c = √3