K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

Ta có : x^4+2017x^2+2016x+2017

=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017

=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017

=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)

=(x^2+x+1)(x^2-x+2017)

Nhớ k mk nha

3 tháng 12 2017

Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)

chúc cậu hok tốt _@

27 tháng 1 2018

\(x^4+2017x^2+2016x+2017\)

\(=\left(x^4+x^2+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^4+2x^2+1-x^2\right)+2016\left(x^2+x+1\right)\)

\(=\left[\left(x^2+1\right)-x^2\right]+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2017\right)\)

27 tháng 1 2018

\(x^4+2017x^2+2016x+2017\)

\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)

\(=x.\left(x^3-1\right)+2007.\left(x^2+x+1\right)\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2007.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^4-2x^3+2x^2+2x^3-4x^2+4x+x^2-2x+2\)

\(=\left(x^4-2x^3+2x^2\right)+\left(2x^3-4x^2+4x\right)+\left(x^2-2x+2\right)\)

\(=x^2\left(x^2-2x+2\right)+2x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x^2+2x+1\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)^2\)

16 tháng 8 2023

\(x^4-x^2+2x+2\)

\(=x^2\left(x^2-1\right)+2\left(x+1\right)\)

\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=\left(x+1\right)\left(x^3-x^2+2\right)\)

\(\dfrac{1}{4}x^2+2xy+4y^2=\left(\dfrac{1}{2}x+2y\right)^2\)

2 tháng 9 2019

       \(x^4+2002x^2-2001x+2002\)

\(=x^4+2002x^2+x-2002x+2002\)

\(=\left(x^4+x\right)+\left(2002x^2-2002x+2002\right)\)

\(=x\left(x^3+1\right)+2002\left(x^2-x+1\right)\)

\(=x\left(x+1\right)\left(x^2-x+1\right)+2002\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left[x\left(x+1\right)+2002\right]\)

\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)

26 tháng 7 2018

\(x^4-5x^2y^2+4y^4\)

\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)

\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)

1 tháng 8 2019

\(x^4\ge0;x^2\ge0;4>0\Rightarrow x^4+x^2+4>0\)

1 tháng 8 2019

đề lỗi rồi

22 tháng 11 2015

x^4+64

=(x^2)^2+8^2+2.x^2.8-2.x^2.8

=(x^2+8)^2-16x^2

=(x^2+8-4x)(x^2+8+4x)