2x-4y/3=4z-3x/2=3y-2z/4
tìm x y z biết 2x-y+z=27
giúp mình với , mai thii r . thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}.\)VÀ \(2x-y+z=27\)
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}=\frac{6x-12y}{9}\)\(=\frac{8z-6x}{4}=\frac{12y-8z}{16}\)
\(=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}\)\(=\frac{0}{29}=0\)
\(\Rightarrow2x=4y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\Rightarrow4z=3x\Rightarrow\frac{z}{3}=\frac{x}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}\)\(=\frac{27}{9}=3\)
\(\frac{x}{4}=3\Rightarrow x=12\)
\(\frac{y}{2}=3\Rightarrow y=6\)
\(\frac{z}{3}=3\Rightarrow z=9\)
VẬY X = 12, Y = 6, Z = 9
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^
Có gì không hiểu bạn ib nha ^^
1. \(2x=3y-2x\left(1\right)\) và \(x+y=14\)
\(\left(1\right)\Leftrightarrow4x=3y\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)
Theo tính chất dãy tỉ số bằng nhau, có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)
Bạn tự kết luận ^^
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{6x-12y}{9}=\frac{8z-6x}{4}=\frac{12y-8z}{16}=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}=\frac{\left(6x-6x\right)-\left(12y-12y\right)+\left(8z-8z\right)}{29}=0.\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}.\)
\(\Rightarrow\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}\) và \(2x-y+z=27.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}=\frac{27}{9}=3.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=3\Rightarrow x=3.4=12\\\frac{y}{2}=3\Rightarrow y=3.2=6\\\frac{z}{3}=3\Rightarrow z=3.3=9\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;6;9\right).\)
Chúc bạn học tốt!
\(\dfrac{2x-4y}{3}=\dfrac{4z-3x}{2}=\dfrac{3y-2z}{4}\\ \Rightarrow\dfrac{6x-12y}{9}=\dfrac{8z-6x}{4}=\dfrac{12y-8z}{16}\\ =\dfrac{\left(6x-12y\right)+\left(8z-6x\right)+\left(12y-8z\right)}{4+9+16}=\dfrac{0}{29}=0\\ \Rightarrow2x=4y;4z=3x;3y=2z\\ \Rightarrow\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ =\dfrac{2x-y+z}{8-2+3}=\dfrac{27}{9}=3\\ \Rightarrow x=12;y=6;z=9\)