Tìm n thuộc N sao cho
a) (5n+8) chia hết cho (2n+1)
b) (4n+7) chia hết cho (2n-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1
Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1
3) Ta có : 5n - 1 chia hết chi n - 2
=> 5n - 10 + 9 chia hết chi n - 2
=> 5(n - 2) + 9 chia hết chi n - 2
=> n - 2 thuộc Ư(9) = {1;3;9}
Ta có bảng :
n - 2 | 1 | 3 | 9 |
n | 3 | 5 | 11 |
1) Ta có : 2n + 3 chia hết cho 3n + 1
<=> 6n + 9 chia hết cho 3n + 1
<=> 6n + 2 + 7 chia hết cho 3n + 1
=> 7 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(7) = {1;7}
Ta có bảng :
3n + 1 | 1 | 7 |
3n | 0 | 6 |
n | 0 | 2 |
Vậy n thuộc {0;2}
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
a, 5n chia hết cho n - 2
=> 5n - 10 + 10 chia hết cho n - 2
=> 5 ( n - 2 ) + 10 chia hết cho n - 2
=> 10 chia hết cho n - 2
=> n - 2 \(\in\)Ư ( 10 ) = { -10 ; - 5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10 }
=> = { - 8 ; - 3 ; 0 ; 1 ; 3 ; 4 ; 7 ; 12 }
Do n \(\in\)N => n = { 0 ; 1 ; 3 ; 4 ; 7 ; 12 }
b) 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2( 2n + 1 ) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 3 ) = { - 3 ; - 1 ; 1 ; 3 }
=> n = { -2 ; -1 ; 0 ; 1 }
Do n \(\in\)N => n = { 0 ; 1 }
c) 3n + 2 chia hết cho 2n - 1
=> 2( 3n + 2 ) chia hết cho 2n - 1
=> 6n + 4 chia hết cho 2n - 1
=> 6n - 3 + 7 chia hết cho 2n - 1
=> 3 ( 2n - 1 ) + 7 chia hết cho 2n - 1
=> 7 chia hết cho 2n - 1
=> 2n - 1 \(\in\)Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n = { -3 ; 0 ; 1 ; 4 }
Do n \(\in\)N => n = { 0 ; 1 ; 4 }
a) 5n chia hết cho n-2
=> 5n-10+10 chia hết cho n-2
=> 5(n-2)+10 chia hết cho n-2
=> 5(n-2) chia hết cho n-2 ; 10 chia hết cho n-2
=> n-2 thuộc Ư(10)={1,2,5,10}
=> n thuộc {3,4,7,12}
b) 4n+5 chia hết cho 2n+1
=> 4n+2+3 chia hết cho 2n+1
=> 2(2n+1)+3 chia hết cho 2n+1
=> 2(2n+1)+3 chia hết cho 2n+1 ; 3 chia hết cho 2n+1
=> 2n+1 thuộc Ư(3)={1,3}
=> n thuộc {0,1}