Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho S=\(1+2+2^2+.....+2^{2005}\)
Hãy so sánh S với \(5.2^{2004}\)
\(S=1+2+2^2+...+2^{2005}\)
\(2.S=2+2^2+2^3+...+2^{2006}\)
\(2S-S=S=\left(2+2^2+..+2^{2006}\right)-\left(1+2+2^2+..+2^{2005}\right)\)
\(S=2^{2006}-1\)
\(A=5.2^{2004}=\left(4+1\right).2^{2004}=2^2.2^{2004}+2^{2004}=2^{2006}+2^{2004}\)
S<A
\(S=1+2+2^2+...+2^{2005}\)
\(2.S=2+2^2+2^3+...+2^{2006}\)
\(2S-S=S=\left(2+2^2+..+2^{2006}\right)-\left(1+2+2^2+..+2^{2005}\right)\)
\(S=2^{2006}-1\)
\(A=5.2^{2004}=\left(4+1\right).2^{2004}=2^2.2^{2004}+2^{2004}=2^{2006}+2^{2004}\)
S<A