K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

26 tháng 12 2015

NA/BA = NC/BC 
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm) 
=> NC-NA=4 (cm) 
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2 
=> NA= BA*2 =6 (cm)

27 tháng 12 2015

theo tính chất đường phân giác 
NA/BA = NC/BC 
Vì Tam giác ABC vuông tại A, biết AB=3cm,BC=5cm => AC= 4(cm) 
=> NC+NA=4 (cm) 
=> NC/BC = NA/BA = ( NC-NA)/(BC-AB) = 2 
=> NA= BA*2 =6 (cm)

7 tháng 1 2022

Cho tam giác ABC có AB = 3cm, AC = 4cm, BC = 5cm. a) Chứng minh tam giác ABC vuông tại A. b) Vẽ tia phân giác BD (D thuộc AC). Vẽ tia phân giác BD (D thuộc AC), từ D vẽ DE vuông góc với BC (E thuộc BD). AD cắt AB tại F, ED cắt AB tại F. Chứng minh DA = DE và DF > DE  Phần c

7 tháng 1 2022

nhầm nha

6 tháng 9 2017

 cách giải như sau: 
EB là đường phân giác ngoài của ^B nên vg với đường phân giác trong BD 
BD phân giác trong ^B 
=> BA / BC = DA / DC, đặc AB = a => BC = căn(a^2 + (3+ 5)^2) 
=> a/ căn( a^2 + 8^2) = 3/5 
bình phương 2 vế: 
a^2 /( a^2 + 8) = 9/25 
<> 25a^2 = 9a^2 + 576 
<> a^2 = 36 <> a= 6 ( do a hk âm ) 
=> AB = 6 => BC = 10 
do tg EBD vuông tai B đường cao BA 
=> AB^2 = AE.AD 
=> AE = AB^2 / AD = 36 / 3 = 12

6 tháng 9 2017

co ai giai bai nay ho tui ko :14.14.12.12.14.12.501

24 tháng 6 2021

undefined

undefined

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)