nếu a + | a | = 0 thì : A . a = 0 B. a<0 C. a>0 D. a<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) thì b>0
b) thì b < 0
c)a>0,b<0, b<0,a>0 hoặc a,b=0
d) thì a>b hoặc a,b=0
e) thì a>b>=0
g)thì a=0 hoặc b =0
h)b<0
i)b>0
a) Nếu \(a+b>0\) và \(a< 0\) thì \(b>\left|a\right|\)
b) Nếu \(a+b< 0\) và \(a>0\) thì \(\left|b\right|>a\)
c) Nếu \(a+b=0\) thì a và b là 2 số đối nhau
d) Nếu \(a-b=0\) thì \(a=b\)
e) Nếu \(a-b>0\) thì \(a>b\)
g) Nếu \(ab=0\) thì \(a=0\) hoặc \(b=0\)
h) Nếu \(ab>0\) và \(a< 0\) thì \(b< 0\)
i) Nếu \(ab< 0\) và \(a< 0\) thì \(b>0\)
a) thì b> /a/
b) thì b<-a
c) thì a=0;b=0 hoặc a và b đối nhau
d) thì a=b
tích .........
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ad+ab< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(vì \(b,d>0\)).
\(ad< bc\Leftrightarrow ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\).
\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)
\(\rightarrow ad+ab< bc+ab\)
\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) \(\left(1\right)\)
\(\text{Ta có:}\)
\(ad< bc\)
\(\rightarrow ad+cd< bc+cd\)
\(\rightarrow d.\left(a+c\right)< c.(b+d)\)
\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) \(\left(2\right)\)
\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Ta có : \(\frac{a}{b}<\frac{c}{d}\Rightarrow\frac{ad}{bd}<\frac{cb}{bd}\)
\(\Rightarrow\)\(ad\)\(<\)\(cb\) (vì \(bd>0\)) \(\left(1\right)\)
\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{\left(a+c\right)b}{\left(b+d\right)b}=\frac{ab+cb}{b\left(b+d\right)}\)
vì \(b,d>0\Rightarrow b\left(b+d\right)>0\) \(\left(1\right)\)
vì \(ad\)\(<\)\(cd\Rightarrow\)\(ab+ad\)\(<\)\(ab+cb\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\frac{ab+ad}{b\left(b+d\right)}<\frac{ab+cb}{b\left(b+d\right)}\)
hay \(\frac{a}{b}<\frac{a+c}{b+d}\) \(\left(\cdot\right)\)
\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)
\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{cb+cd}{d\left(b+d\right)}\)
Vì \(ad\)\(<\)\(cd\Rightarrow\)\(ad+cd<\)\(cb+cd\) \(\left(3\right)\)
Từ \(\left(1\right)\) và \(\left(3\right)\) \(\Rightarrow\frac{ad+cd}{d\left(b+d\right)}<\frac{cb+cd}{d\left(b+d\right)}\)
hay \(\frac{a+c}{b+d}<\frac{c}{d}\) \(\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\) và \(\left(\cdot\cdot\right)\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)