Cho góc xoy khác góc bẹt.Lấy điểm M,N thuộc tia ox sao cho Om<ON.Lấy các điểm P,Q thuộc tia Oy sao cho OP=OM,OQ=ON.Gọi E là giao điểm của MQ và NP.Chứng minh rằng:
a) MQ=NP
b) tam giác EMN=tam giác EPQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆OAD và ∆OCB có: OA= OC(gt) ∠O chung OB = OD (gt) OAD = OCB (c.g.c) AD = BC Nên ∆OAD=∆OCB(c.g.c) suy ra AD=BC. b) Ta có ∠A1 = 1800 – ∠A2 ∠C1 = 1800 – ∠C2 mµ ∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên) ⇒ ∠A1 = ∠C1 Ta có OB = OA + AB OD = OC + CD mà OB = OD, OA = OC ⇒ AB = CD Xét ΔEAB = ΔECD có: ∠A1 = ∠C1 (c/m trên) AB = CD (c/m trên) ∠B1 = ∠D1 (ΔOCB = ΔOAD) ⇒ ΔEAB = ΔECD (g.c.g) c) Xét ΔOBE và ΔODE có: OB = OD (GT) OE chung AE = CE (ΔAEB = ΔCED) ⇒ΔOBE = ΔODE (c.c.c) ⇒ ∠AOE = ∠COE ⇒ OE là phân giác của góc ∠xOy tk mình nhé
a)xét tam giác ADO và tam giác BCO có:
OA=OC(gt)
góc O chug
OD=OB(gt)
Do đó tam giác ADO=tam giác BCO(cgc)
Suy ra AD=BC92 cạnh tương ứng)
b) Theo câu a: tam giác ADO=tam giác BCO
Suy ra góc A=góc C(2 góc tương ứng)
Xét tam giác EAB và tam giác ECD có:
gócBEA=góc DEC (đối đỉnh)
AB=CD
góc A=góc C(cmt)
Do đó tam giácEAB=tam giácECD(gcg)
c)theo câu b)tam giac EAB=tam giác ECD
Suy ra EA=EC(2 cạnh tương ứng)
Xét tam giác EAO và tam giác ECO có :
EA=EC(cmt)
góc E chung
OA=OC(gt)
Do đó tam giác EAO=tam gíacECO(cgc)
Suy ra góc AOE=góc COE
Vậy OE là tia phân giác của góc xoy
a: Xét ΔOCB và ΔOAD có
OC=OA
\(\widehat{O}\) chung
OB=OD
Do đó: ΔOCB=ΔOAD
a, Vì \(\left\{{}\begin{matrix}OA=OB\\AM=MB\\OM.chung\end{matrix}\right.\) nên \(\Delta OAM=\Delta OBM\left(c.c.c\right)\)
b, Vì \(\Delta OAM=\Delta OBM\) nên \(\widehat{AOM}=\widehat{BOM}\)
Do đó OM là p/g góc xOy