K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2015

\(2A=6x+4y+\frac{12}{x}+\frac{16}{y}=3x+\frac{12}{x}+y+\frac{16}{y}+3x+3y\)

Áp dụng bất đẳng thức cô si cho 2 số dương, ta có:

\(3x+\frac{12}{x}\ge2.\sqrt{36}=12\)

\(y+\frac{16}{y}\ge2\sqrt{16}=8\)

Lại có\(x+y\ge6\Rightarrow3x+3y\ge18\)

Vậy \(2A\ge12+8+18\Leftrightarrow2A\ge38\Leftrightarrow A\ge19\)    \(a=19\Leftrightarrow x=2;y=4\)

12 tháng 3 2021

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(2P=6x+4y+\frac{12}{x}+\frac{16}{y}\)

\(=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+3\left(x+y\right)\)

\(\ge2\sqrt{3x\cdot\frac{12}{x}}+2\sqrt{y\cdot\frac{16}{y}}+3\cdot6=12+8+18=38\)( bđt AM-GM và giả thiết x + y ≥ 6 )

=> P ≥ 19

Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x=\frac{12}{x}\\y=\frac{16}{y}\\x+y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy MinP = 19

12 tháng 3 2021

Ta có: \(P=3x+2y+\frac{6}{x}+\frac{8}{y}=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)\)

Vì \(\frac{3}{2}x+\frac{3}{2}y=\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6;\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)

\(\Rightarrow P\ge9+6+4=19\)

Dấu '=' xảy ra <=> \(\hept{\begin{cases}x+y=6\\\frac{3x}{2}=\frac{6}{x}\\\frac{y}{2}=\frac{8}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy GTNN của P là 19

NV
13 tháng 6 2020

2.

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(P=\frac{3x}{2}+\frac{6}{x}+\frac{y}{2}+\frac{8}{y}+\frac{3x}{2}+\frac{3y}{2}\)

\(P=\left(\frac{3x}{2}+\frac{6}{x}\right)+\left(\frac{y}{2}+\frac{8}{y}\right)+\frac{3}{2}\left(x+y\right)\)

\(P\ge2\sqrt{\frac{18x}{2x}}+2\sqrt{\frac{8y}{2y}}+\frac{3}{2}.6=19\)

\(P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

NV
13 tháng 6 2020

1.

Do \(0\le a;b;c\le1\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-abc-a-b-c+ab+bc+ca\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

Mặt khác \(0\le a;b;c\le1\Rightarrow\left\{{}\begin{matrix}b^2\le b\\c^3\le c\end{matrix}\right.\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị

2 tháng 8 2020

\(B=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(=\frac{3x}{2}+\frac{6}{x}+\frac{3x}{2}+\frac{y}{2}+\frac{8}{y}+\frac{3y}{2}\)

Áp dụng Cauchy ta được :

\(\frac{3x}{2}+\frac{6}{x}\ge2\sqrt{\frac{3x}{2}.\frac{6}{x}}=6\)

\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{8y}{2y}}=4\)

\(\Rightarrow B\ge6+4+\frac{3\left(x+y\right)}{2}\ge6+4+9=19\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=6\\\frac{y}{2}=\frac{8}{y}\\\frac{3x}{2}=\frac{6}{x}\end{cases}\Leftrightarrow x=2;y=4}\)

26 tháng 7 2019

Gợi ý nhé!  Tách rồi sử dụng Cauchy cho hai số ko âm

\(P=\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)+2\left(x+y\right)\)

\(\ge2\sqrt{3.12}+2\sqrt{16}+2.6=32\)

"=" xảy ra <=> x=2; y=4

26 tháng 7 2019

Ta có : \(P=5x+3y+\frac{12}{x}+\frac{16}{y}\) 

\(P=2\left(x+y\right)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)  

Áp dụng BĐT Cô-si, ta có: \(3x+\frac{12}{x}\ge2\sqrt{\left(3.12\right)}=12\) 

\(y+\frac{16}{y}\ge2\sqrt{\left(1.16\right)}=8\) 

Ta có: \(x+y\ge6\) 

\(\Rightarrow2\left(x+y\right)\ge12\) 

\(\Rightarrow P\ge12+12+8=32\)

Dấu''='' xảy ra khi:

 \(3x=\frac{12}{x}\) , \(x+y=6\) , \(y=\frac{16}{y}\) 

\(\Rightarrow x=2,y=4\)

Vậy giá trị nhỏ nhất của P là 32 khi x = 2, y = 4

2 tháng 7 2019

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(P=\left(\frac{3}{2}x+\frac{3}{2}y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)

\(P=\frac{3}{2}\left(x+y\right)+\left(\frac{3}{2}x+\frac{6}{x}\right)+\left(\frac{8}{y}+\frac{y}{2}\right)\)

\(\ge\frac{3}{2}.6+2\sqrt{\frac{3x}{2}.\frac{6}{x}}+2\sqrt{\frac{8}{y}.\frac{y}{2}}=9+6+4=19\)

\("="\Leftrightarrow x=2;y=4\)

14 tháng 7 2020

các bạn biết ronaldo là ai không ?

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y