Tìm x, y là các số tự nhiên thỏa mãn 10 < x; y < 30 và x = ƯCLN ( 2y+5; 3y+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x chia hết cho 2 nên tận cùng là 0, 2,4,6,8
Mà 30 < x < 50
=> x={32;34;36;38;40;42;44;46;48}
b)Vì x chia hết cho cả 2,5 nên x có tân cùng là 0
Mà: 10<y<90
=>x={20;30;40;50;60;70;80}
Do x là UCLN ( 2y + 5 ; 3y + 2 ) nên
2y + 5 chia hết cho x (1)=> 6y + 15 chia hết cho x (3)
3y + 2 chia hết cho x (2)=> 6y + 4 chia hết cho x(4)
Lấy (3) trừ cho (4) ta được 11 chia hết cho x
=> x thuộc Ư(11) mà x > 10
=> x = 11
Lấy (2) trừ (1) ta được y - 3 chia hết cho x hay y - 3 chia hết cho 11
Mà y > 10 và y <30> y -3 > 7 và y - 3 < 27> y - 3 =11 hoặc y - 3 = 22 => y = 14 hoặc y = 25
Xét y = 14 => 2y + 5 = 33 và 3y + 2 =44 ( thỏa mãn )
Xét y = 25 => 2y + 5 = 55 và 3y + 2 = 77 ( thỏa mãn )
Vậy x =11 và y =14 hoặc x = 11 và y =25
Đây là Toán mà
a)(x+1)+(x+2)+(x+3)+......+(x+10)=575
(x+x+x+.....+x)+(1+2+3+....+10)=575
10x+55=575
10x=575-55
10x=520
x=520:10
x=52
a) (x+1)+(x+2)+(x+3)+…+(x+10)=575
=>x+1+x+2+x+3+…+x+10=575
=>(x+x+x+…+x)+(1+2+3+…+10)=575
Từ 1 đến 10 có: (10-1):2+1=10(số)
=>x.10+10.(1+10):2=575
=>x.10+10.11:2=575
=>x.10+110:2=575
=>x.10+55=575
=>x.10=575-55
=>x.10=520
=>x=520:10
=>x=52
Vậy x=52
Answer:
Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:
\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Mà x > 10 => x = 11
Với x = 11, lại có y < 30
\(\Rightarrow2y+5< 65;2y+5⋮11\)
Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11
Trường hợp 1: \(2y+5=11\)
\(\Rightarrow y=3\)
\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)
Trường hợp 2: \(2y+5=22\)
\(\Rightarrow2y=17\) (Loại)
Trường hợp 3: \(2y+5=33\)
\(\Rightarrow y=14\)
\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)
Trường hợp 4: \(2y+5=44\)
\(\Rightarrow2y=39\) (Loại)
Trường hợp 5: \(2y+5=55\)
\(\Rightarrow y=25\)
\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)
Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)