K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

a. MNIJ là hình thang vì JI // BC, MN // CD 

Vì ABC va CED là tam giác đều, các góc 60độ => AB // CE và AC//ED 

dễ dàng cm được MJ // AB, kết hợp MN // BC => góc JMN = góc ABC = 60 độ

tương tự góc còn lại => MNIJ là cân

b. từ câu a => JN=MI mà MI = 1/2 AE => đpcm

17 tháng 8 2018

bạn trình bày rõ hơn được ko

Tham khảo

loading...

Tham khảo

loading...

Tham khảo

loading...

Tham khảo

loading...

8 tháng 9 2018

Các bạn bỏ câu c nhé

8 tháng 9 2018

Bạn kham khảo nha:

Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math
6 tháng 9 2016

A B C D E H I K K

BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)

Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)

Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.

Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)

Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)

Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ 

Từ  (2), (4) và (6) suy ra IH=HK 

Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)

10 tháng 9 2016

BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)

Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)

Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.

Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)

Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)

Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ 

Từ  (2), (4) và (6) suy ra IH=HK 

Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)