Cho tam giác AEB đều , trên tia đối tia EA,EB lần lượt lấy 2 điểm C và D sao cho EC=ED . Gọi I,H,K lần lượt là trung điểm AE,DE,BC
Chứng minh tam giác IDK đều
vẽ hình với nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. MNIJ là hình thang vì JI // BC, MN // CD
Vì ABC va CED là tam giác đều, các góc 60độ => AB // CE và AC//ED
dễ dàng cm được MJ // AB, kết hợp MN // BC => góc JMN = góc ABC = 60 độ
tương tự góc còn lại => MNIJ là cân
b. từ câu a => JN=MI mà MI = 1/2 AE => đpcm
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online MathBAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)
Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)
Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.
Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)
Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)
Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ
Từ (2), (4) và (6) suy ra IH=HK
Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)
BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)
Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)
Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.
Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)
Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)
Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ
Từ (2), (4) và (6) suy ra IH=HK
Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)