Cho góc xAy khác góc bẹt, Az là tia phân giác của góc xAy, B là điểm cố định trên Ax, C là điểm chuyển động trên đoạn AB, D là điểm chuyển động trên tia Ay sao cho AD=BC. Chứng minh rằng đường trung trực của CD luôn đi qua một điểm cố định khi C và D chuyển động.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
AE=AB+BE
AC=AD+DC
mà AD=AB ; BE=DC
=>AE=AC
Xét tam giác ABC và tam giác ADE có:
AD=AB
A là góc chung
AE= AC
=> Tam giác ABC = tam giác ADE
b) Ta có
Tam giác ABC = tam giâc ADE
=> Góc AED=góc ACB (2 góc tương ứng)
=>BC=DE ( 2 cạnh tương ứng)
c) Đến đây thì mình chịu. Sorry!
Xét tam giác AMD và tam giác AEN:
Góc A chung.
AM = AE (gt).
AD = AN (gt).
=> Tam giác AMD = Tam giác AEN (c - g - c).
=> MD = EN (2 cạnh tương ứng).
Ta có: \(\widehat{AMD}+\widehat{NMI}=180^o;\widehat{AEN}+\widehat{DEI}=180^o.\)
Mà \(\widehat{AMD}=\widehat{AEN}\) (Tam giác AMD = Tam giác AEN).
=> \(\widehat{NMI}=\widehat{DEI.}\)
Ta có: MN = AN = AM; ED = AD - AE.
Mà AM = AE, AN = AD (gt).
=> MN = ED.
Xét tam giác INM và tam giác IDE:
MN = ED (cmt).
\(\widehat{NMI}=\widehat{DEI}\left(cmt\right).\)
\(\widehat{MNI}=\widehat{EDI}\) (Tam giác AMD = Tam giác AEN).
=> Tam giác INM = Tam giác IDE (g - c - g).
Xét tam giác NAI và tam giác DAI:
AI chung.
AN = AD (gt).
NI = DI (Tam giác INM = Tam giác IDE).
=> Tam giác NAI = Tam giác DAI (c - c - c).
=> \(\widehat{NAI}=\widehat{DAI}\) (2 góc tương ứng).
=> AI là phân giác góc xAy.
Xét tam giác AND: AN = AD (gt).
=> Tam giác AND cân tại A.
Mà AI là phân giác (cmt).
=> AI là đường cao (Tính chất tam giác cân).
=> AI vuông góc với NB
a: Xét ΔABE và ΔADC có
AB=AD
\(\widehat{BAE}\) chung
AE=AC
DO đó: ΔABE=ΔADC
Suy ra: BE=DC
b: Xét ΔIBC và ΔIDE có
\(\widehat{IBC}=\widehat{IDE}\)
BC=DE
\(\widehat{ICB}=\widehat{IED}\)
Do đó: ΔIBC=ΔIDE
c: Xét ΔAIC và ΔAIE có
AI chung
IC=IE
AC=AE
DO đó: ΔAIC=ΔAIE
Suy ra: \(\widehat{CAI}=\widehat{EAI}\)
hay AI là tia phân giác của góc xAy
Vẽ đường trung trực của AB cắt Az, Ax lần lượt tại M,H
Ta có \(\widehat{DAM}=\widehat{MAB}\)(Az là tia phân giác của góc xAy)
Mà \(\widehat{MBA}=\widehat{MAB}\)(do MH là trung trực của AB)
\(\Rightarrow\widehat{DAM}=\widehat{MBA}\)
Xét \(\Delta ADM\)và \(\Delta BCM\)có:
AD = BC (gt)
\(\widehat{DAM}=\widehat{CBM}\)(cmt)
AM = BM (do MH là trung trực của AB))
Do đó \(\Delta ADM=\Delta BCM\left(c-g-c\right)\)
\(\Rightarrow DM=CM\)(hai cạnh tương ứng)
Khi đó M thuộc đường trung trực của CD
Vậy đường trung trực của CD luôn đi qua một điểm cố định M khi C và D chuyển động (đpcm)