Cho tam giác ABC vuông tại A trung tuyến AM, họi d là ddiemr thuộc AM. kẻ DI vuông góc với AB, DK vuông góc với AC
a, CMR: IK song song BC
b, xác định điểm D trên AM sao cho IK bằng 1/3 BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm
A, Vì ABC cân tại A suy ra AB=AC; Góc B = góc C
Xét ABE và ACD có:
AB=AC cmt
BE=CD gt
Góc B = góc C cmt
=> ABE = ACD
B, Dễ thấy tam giác HBE = tam giác KCD (ch-gn)
=> EH=KD (đpcm) và BH=CK
C, vì BH=CK => AH=AK => tam giác AHK cân tại A => Góc AHK = 180-A/2 (1)
Vì tam giác ABC cân tại A => Góc B = 180-A/2 (2)
Từ 1 và 2 => Góc AHK = góc B mà ở vị trí đồng vị => HK // BC (đpcm)
a) Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{BMH}=\widehat{CMK}\)(hai góc đối đỉnh)
Do đó: ΔBHM=ΔCKM(cạnh huyền-góc nhọn)
⇒BH=CK(hai cạnh tương ứng)
b) Vì AB//CD(gt)
nên \(\widehat{ABM}=\widehat{DCM}\)(hai góc so le trong)
Xét ΔABM và ΔDCM có
\(\widehat{ABM}=\widehat{DCM}\)(cmt)
BM=CM(M là trung điểm của BC)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔABM=ΔDCM(c-g-c)
⇒AM=DM(hai cạnh tương ứng)
Xét ΔAMC và ΔDMB có
AM=DM(cmt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét tứ giác BECD có
M là trung điểm của BC
M là trung điểm của ED
Do đó: BECD là hình bình hành
Suy ra: CE//BD
c: Hình bình hành BECD có \(ED\perp BC\)
nên BECD là hình thoi
=>BC là tia phân giác của góc DBE
Bạn tự vẽ hình
a, Do góc MIA = góc IAK= góc AKM=900 nên tứ giác AKMI là hình chữ nhật
=> AM=IK ( tính chất hình chữ nhật)
b, Do AKMI là hình chữ nhật nên IM=AK, IM//AK=> IM//KH
Mà AK=HK(gt) nên IM=KH
Vì IM=KH, IM//KH nên IMHK là hình bình hành
c, Do O là giao điểm của hai đường chéo hình chữ nhật AKMI nên OI=OK
Do E là giao điểm của hai đường chéo hình bình hành KHMI nên EM=EK
Xét tam giác KMI có OI=OK, ME=KE nên OE là đường trung bình của tam giác KMI
=> OE//IM
Mà IM//AC nên OE//AC
la sao eo hieu anh oi em moi lop 5 anh lop 7 saoe lam dc ha troi,voi lai bai do cau hoi giong em nhung bai em la tim ti so % cua AI va IC anh lam dc ko giai giup em voi anh.Anh ko giai dc xung dang lam gi la lop 7 ha anh,em noi co dung ko????EM NOI VAY LA DUNG CHINH XAC,DUNG CCMNR!!!!!!!!!!!!:))))))
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng:
a) AM=IK
b) Tam giác AMI bằng tam giác IKC
c) AI=IC
Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR
a) BD= CE
b) tam giác OEB bằng tam giác ODC
c) AO là tia phân giác cua góc BAC
Được cập nhật 41 giây trước (20:12)
a: BC=15cm
=>AM=7,5cm
b: Xét tứ giác AEMF có góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
Gọi L là giao điểm AD và IK
Xét tứ giác AIDK ta có
góc IAK =90 ( tam giác ABC vuông tại A)
góc DIA =90 ( DI vuông góc AB tại I)
góc DKA =90 ( DK vuông góc AC taiK)
-> AIDK là hcn
mà L là giao diem AD và IK
nên L là trung diem AD và IK
ta có
AL=1/2 AD ( L là trung diem AD)
LI =1/2 IK ( L là trung diem IK)
AD=IK ( AIDK là hcn)
=> AL=LI
=> tam giác ALI cân tại L
Xét tam giác ABC vuông tại A ta có
AM là đường trung tuyến (GT)
-> AM=1/2 BC
mà BM=1/2 BC ( M là trung điểm BC)
nên AM=BM
-> tam giac AMB cân tại M
ta có
góc LIA= góc BAM ( tam giác ALI cân tại L)
góc BAM= góc ABM ( tam giác ABM cân tại M)
-> góc LIA= góc ABM
mà 2 góc nẳm ở vị trí đồng vị
nên IK //BC
b) ta có
IK=1/3 BC (gt)
IK=AD (AIDK la hcn)
-> AD=1/3 BC
-> AD=1/3 .2 BM
-> AD=2/3 BM
mà BM=AM (cmt)
nên AD=2/3 AM