K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Bạn ghi đề bị sai rồi, phải là abc-a'b'c'=0 mới đúng!

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=1\Rightarrow\frac{abc}{a'b'c'}=1^3=1\Leftrightarrow abc=a'b'c'\Rightarrow abc-a'b'c'=0\)

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)$

Cũng áp dụng BĐT Cô-si: $a+b+c\geq 3\sqrt[3]{abc}=3$

$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)\geq a+b+c+3$

$\Rightarrow a^2+b^2+c^2\geq a+b+c$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

NV
4 tháng 10 2021

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)

\(=abc-abc+1-1=0\) (đpcm)

18 tháng 10 2016

a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0) 
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0) 
(1) + (2) => đpcm

18 tháng 10 2016

mk làm mà sai thì kệ nhá ^^

a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc ﴾1﴿ ﴾vì c # 0﴿

b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c ﴾2﴿ ﴾vì a' # 0﴿ ﴾1﴿ + ﴾2﴿ => đpcm 

6 tháng 4 2022

Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\) \(\Rightarrow xyz=1\)  (x;y;z > 0 do a;b;c>0)

Cần c/m : \(VT=\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}+\dfrac{x^2+y^2}{z}\ge x+y+z+3=VP\) 

Dễ dàng c/m : VT \(\ge2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)   (1)

Thấy : \(\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\)  . CMTT : \(\dfrac{xz}{y}+\dfrac{yz}{x}\ge2z;\dfrac{yz}{x}+\dfrac{xy}{z}\ge2y\)

Suy ra : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge x+y+z\)

Có : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge3\sqrt[3]{xyz}=3\)

Suy ra : \(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\ge x+y+z+3\left(2\right)\)

Từ (1) ; (2) suy ra : \(VT\ge VP\)

" = " \(\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1\)

 

6 tháng 4 2022

Em 2k8 ms học nên k chắc 

2 tháng 4 2017

a chịu

10 tháng 8 2019

Ta có : \(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\Rightarrow ab+a'b'=a'b\Rightarrow abc+a'b'c=a'bc\left(1\right)\\\frac{b}{b'}=\frac{c'}{c}\Rightarrow bc+b'c'=b'c\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\end{cases}}\)

Từ (1) và (2) ta có đpcm

19 tháng 11 2021

Answer:

Ta có:

\(\hept{\begin{cases}\frac{a}{a'}+\frac{b'}{b}=1\\\frac{b}{b'}+\frac{c'}{c}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab+a'b'=a'b\\bc+b'c'=b'c\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}ab=a'b-a'b'\\b'c'=b'c-bc\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}abc=a'bc-a'b'c\\a'b'c'=a'b'c-a'bc\end{cases}}\)

Vậy \(abc+a'b'c'=0\)

21 tháng 7 2015

A / A' + B' / B=1 --->AB + A'B' = A'B (1)  

B / B' + C'/ C=1--->BC +B'C' = B'C(2)  

nhan 2 ve  cua pt 1 cho C  

nhan 2 ve cua pt 2 cho A'  

Cộng hai vế của pt (1) và (2) rồi triệt tiêu ta sẽ có kết quả. tự giải nhé