K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2015

xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )

suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q

ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

xét n chia 3 dư  suy ra n=3p+2 (p là thương)

suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p

mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1

3 tháng 6 2015

có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha

24 tháng 6 2015

Số n có 1 trong 3 dạng : 5k ; 5k+1 ; 5k+2 với k thuộc N

Nếu n=5k thì n=5 khi đó n+2=7 ; n+6=11 đều là số nguyên tố , thỏa mãn

Nếu n=5k+1 thì n+2 =5k+3 chia hết cho 3 và lớn hơn 3 nên là hợp số , k thỏa mãn

Nếu n=5k+2 thì n+6 =5k+8 chia hết cho 2 và lớn hơn 2 nên là hợp số , k thỏa mãn

Vậy n=5

17 tháng 6 2015

5                                        

5 tháng 8 2023

Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9. 

 TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.

 TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.

 TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.

11 tháng 10 2021

2n+3= n+1+n+2

mà n+1 chia hết cho n+1 nên n+2 chia hết cho n+1

=>n=0

28 tháng 4 2015

n=12                                                      

20 tháng 4 2022

ai giải giúp mình đi ạ!

2 tháng 5 2022

n=7 khi a=1,b=1

 

26 tháng 7 2016

Do n chia hết cho 9; a + 1 chia hết cho 25

=> n - 99 chia hết cho 9; a + 1 - 100 chia hết cho 25

=. n - 99 chia hết cho 9; n - 99 chia hết cho 25

=> \(n-99\in BC\left(9;25\right)\)

Mà (9;25) = 1 và n nhỏ nhất => n - 99 nhỏ nhất => n - 99 = BCNN(9;25) = 9 x 25 = 225

=> n = 225 + 99 = 324

Vậy n = 324

26 tháng 7 2016

Do n chia hết cho 9; a + 1 chia hết cho 25

=> n - 99 chia hết cho 9; a + 1 - 100 chia hết cho 25

=. n - 99 chia hết cho 9; n - 99 chia hết cho 25

=> $n-99\in BC\left(9;25\right)$n−99∈BC(9;25)

Mà (9;25) = 1 và n nhỏ nhất => n - 99 nhỏ nhất => n - 99 = BCNN(9;25) = 9 x 25 = 225

=> n = 225 + 99 = 324

Vậy n = 324