Tìm x:
7x(x+1) = x + 1
Giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
b) \(3x^2-15x+4=3\left(x^2-5x+\dfrac{25}{4}\right)-\dfrac{59}{4}=3\left(x-\dfrac{5}{2}\right)^2-\dfrac{59}{4}\ge-\dfrac{59}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
Bài 2:
a) \(\Rightarrow\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)
c) \(\Rightarrow x^2\left(x-2\right)+7\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+7\right)=0\)
\(\Rightarrow x=2\left(do.x^2+7\ge7>0\right)\)
\(4x:17=0\)
\(4x=0:17\)
\(\Rightarrow x=0\)
\(7x-8=713\)
\(7x=705\)
\(\Rightarrow x=100\frac{5}{7}\)
\(8\left(x-3\right)=0\)
\(8.x-8.3=0\)
\(8x=0+8.3\)
\(8x=24\)
\(\Rightarrow x=3\)
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
Ta có: \(5x^3+4x^2-3x\left(2x^2+7x-1\right)\)
\(=5x^3+4x^2-6x^3-21x^2+3x\)
\(=-x^3-17x^2+3x\)
`7x(x+1)=x+1`
`<=>7x(x+1)-(x+1)=0`
`<=>(x+1)(7x-1)=0`
`<=>` $\left[\begin{matrix} x=-1\\ x=\dfrac{1}{7}\end{matrix}\right.$
Vậy `S={-1;1/7}`
\(7x\left(x+1\right)=\left(x+1\right)\)
\(\Leftrightarrow7x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(7x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\7x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{-1;\dfrac{1}{7}\right\}\)