4.1/8+1/24+1/48+1/80+1/120+1/168+1/224
''giúp mik với mik cảm ơn''
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/8+1/24+1/48+1/80+1/120+1/168+1/224=>2A=2/8+2/24+2/48+2/80+2/120+2/168+2/224
2A=2/2*4+2/4*6+2/6*8+2/8*10+2/10*12+2/12*14+2/14*16
2A=1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12+1/12-1/14+1/14-1/16
2A=1/2-1/16
2A=7/16
A=7/16:2
A=7/32
\(\frac{1}{4}+\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}\)
\(=\frac{1}{4}.\left(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=\frac{1}{4}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\left(1+1-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\left(2-\frac{1}{7}\right)\)
\(=\frac{1}{4}.\frac{13}{7}=\frac{13}{28}\)
Ta có :
Đặt \(A=\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}+\frac{1}{168}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)
\(2A=\frac{1}{2}-\frac{1}{14}\)
\(2A=\frac{7}{14}-\frac{1}{14}=\frac{3}{7}\)
\(A=\frac{3}{7}:2=\frac{3}{14}\)
=> \(\frac{1}{4}+\frac{3}{14}=\frac{7}{28}+\frac{6}{28}=\frac{13}{28}\)
Ủng hộ mk nha !!! ^_^
\(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(=1+\dfrac{1}{2\times4}+\dfrac{1}{4\times6}+\dfrac{1}{6\times8}+\dfrac{1}{8\times10}+\dfrac{1}{10\times12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)
\(=1+\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{17}{12}\)
A = 1 + 1/2.4 + 1/4.6 + 1/6.8 + 1/8.10 + 1/10.12
2A = 2 + 2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12
= 2 + 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + 1/8 - 1/10 + 1/10 - 1/12
= 2 + 1/2 - 1/12 = 29/12
=> A = 29/12 : 2 = 29/24
Tk mk nha
`1/8+1/24+1/48+1/80+1/120`
`=1/[2xx4]+1/[4xx6]+1/[6xx8]+1/[8xx10]+1/[10xx12]`
`=1/2xx(2/[2xx4]+2/[4xx6]+2/[6xx8]+2/[8xx10]+2/[10xx12])`
`=1/2xx(1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10+1/10-1/12)`
`=1/2xx(1/2-1/12)`
`=1/2xx(6/12-1/12)`
`=1/2xx5/12=5/24`
\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
=\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{10.12}\)
=\(\dfrac{1}{2}.\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{10.12}\right)\)
=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
=\(\dfrac{1}{2}.\dfrac{5}{12}\)
=\(\dfrac{5}{24}\)
Dấu chấm(.)là nhân.
Ta có: \(A=1+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}\)
\(\Leftrightarrow2A=2+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}+\dfrac{2}{10\cdot12}\)
\(\Leftrightarrow2A=2+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\)
\(\Leftrightarrow2A=2+\dfrac{1}{2}-\dfrac{1}{12}\)
\(\Leftrightarrow2A=\dfrac{24}{12}+\dfrac{6}{12}-\dfrac{1}{12}\)
\(\Leftrightarrow2A=\dfrac{29}{12}\)
hay \(A=\dfrac{29}{24}\)
Gọi A=\(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}\)
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}\)
\(2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}\)
\(2A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{12}\)
\(2A=1-\frac{1}{12}=\frac{11}{12}\)
\(A=\frac{11}{12}:2=\frac{11}{24}\)
\(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+\frac{1}{80}+\frac{1}{120}=\frac{5}{24}\)
Vậy tổng của các phân số đó bằng \(\frac{5}{24}\)
Mik đầu tiên đấy , ai click mik mik click lại
\(=\dfrac{1}{8}\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}\right)\)
\(=\dfrac{1}{8}\cdot2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}\right)\)
\(=\dfrac{1}{4}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{6}-\dfrac{1}{7}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{6}{7}=\dfrac{3}{14}\)
\(\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{48}+\dfrac{1}{80}+\dfrac{1}{120}+\dfrac{1}{168}+\dfrac{1}{224}\)
\(=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}+\dfrac{1}{10\cdot12}+\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}+\dfrac{2}{10\cdot12}+\dfrac{2}{12\cdot14}+\dfrac{2}{14\cdot16}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{14}-\dfrac{1}{16}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{16}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{7}{16}=\dfrac{7}{32}\)
kết bn ko HIỀN THƯƠNG