1/5x7 + 1/7x9 + 1/9x11 + ... + 1/21x23 + 1/23x25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/5-1/7 + 1/7 - 1/9 + 1/9 - 1/11+....+1/97-1/99
=1/5 -1/99
=....
\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+\frac{1}{9x11}+\frac{1}{11x13}\)
\(=\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}x\frac{10}{39}\)
\(=\frac{5}{39}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)
1/1 x 3 + 1/3 x 5 + 1/5 x 7 + 1/7 x 9 + 1/9 x 11
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
= 1 - 1/11
= 10/11
\(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{9.11}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{1}{3.5}+....+\frac{2}{9.11}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{11}\right)=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
\(=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(2A=1-\frac{1}{9.11}=1-\frac{1}{99}=\frac{98}{99}\)
\(A=\frac{98}{99}:2=\frac{49}{99}\)
Ủng hộ mk nha!!!
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{11}\right)=\frac{1}{2}.\frac{10}{11}\)
A = \(\frac{5}{11}\)
1/5*7 + 1/7*9 + 1/9*11 + ... + 1/13*15
= 1/2(2/5*7 + 2/7*9 + 2/9*11 + ... + 2/13*15)
= 1/2(1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + 1/13 - 1/15)
= 1/2(1/5 - 1/15)
= 1/2.2/15
= 1/15
Bài giải
\(\text{Đặt }A=\frac{1}{5\text{ x }7}+\frac{1}{7\text{ x }9}+\frac{1}{9\text{ x }11}+\frac{1}{11\text{ x }13}+\frac{1}{13\text{ x }15}\)
\(A=\frac{1}{2}\left(\frac{2}{5\text{ x }7}+\frac{2}{7\text{ x }9}+\frac{2}{9\text{ x }11}+\frac{2}{11\text{ x }13}+\frac{2}{13\text{ x }15}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{15}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{15}\)
\(A=\frac{1}{15}\)
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+\frac{2}{11\times13}\right)\)
\(=\frac{1}{2}\times\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}+\frac{11-9}{9\times11}+\frac{13-11}{11\times13}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{13}\right)=\frac{6}{13}\)
Do đó ta có:
\(\frac{6}{13}\times y=\frac{3}{5}\)
\(\Leftrightarrow y=\frac{13}{10}\).
\(\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+\dfrac{1}{9\cdot11}+...+\dfrac{1}{21\cdot23}+\dfrac{1}{23\cdot25}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+...+\dfrac{2}{21\cdot23}+\dfrac{2}{23\cdot25}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{21}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{25}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{5}-\dfrac{1}{25}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{25}=\dfrac{2}{25}\)