K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

Vì (x-1/5)2004 ≥ 0 ; (y+0.4)100 ≥ 0 ; (z-3)678 ≥ 0 với mọi x,y,z

Để (x-1/5)2004+(y+0.4)100+(z-3)678=0 <=> (x-1/5)2004 = 0 ; (y+0.4)100 = 0 ; (z-3)678 = 0

=> x-1/5 = 0 ; y+0.4=0 ; z-3=0

=> x=1/5 ; y=-0.4 ; z=3

27 tháng 11 2016

Bn chấp nhận kết bn mình nha

20 tháng 3 2020

Ta có :

(x15)2014+(y+0,4)100+(z3)678=0(x−15)2014+(y+0,4)100+(z−3)678=0

(x15)20140(y+0,4)1000(z3)6780{(x−15)2014≥0(y+0,4)100≥0(z−3)678≥0

(x15)2014+(y+0,4)100+(z3)6780⇔(x−15)2014+(y+0,4)100+(z−3)678≥0

Lại có : (x15)2014+(y+0,4)100+(z3)678=0(x−15)2014+(y+0,4)100+(z−3)678=0

(x15)2014=0(y+0,4)100=0(z3)678=0⇔{(x−15)2014=0(y+0,4)100=0(z−3)678=0

x15=0y+0,4=0z3=0⇔{x−15=0y+0,4=0z−3=0

x=15y=0,4z=3

2 tháng 11 2018

\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^6=0.\)

\(Nx:\left(x-\frac{1}{5}\right)^{2004}\ge0;\left(y+0,4\right)^{100}\ge0;\left(z-3\right)^{678}\ge0\)

\(\Rightarrow VT=0\Leftrightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\)

\(\left(x-\frac{1}{5}\right)^{2004}\Leftrightarrow x-\frac{1}{5}=0\Leftrightarrow x=\frac{1}{5}\)

\(\left(y+0,4\right)^{100}=0\Leftrightarrow y+0,4=0\Leftrightarrow y=-0,4\)

\(\left(z-3\right)^{678}=0\Leftrightarrow z-3=0\Leftrightarrow z=3\)

Vậy \(x=\frac{1}{5};y=-0,4;z=3\)

Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+\dfrac{2}{5}\right)^{100}\ge0\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+\dfrac{2}{5}\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(\dfrac{1}{5};\dfrac{-2}{5};3\right)\)

17 tháng 1 2022

Vì \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0,\left(y+0,4\right)^{100}\ge0,\left(z-3\right)^{678}\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

Vậy \(\left(x,y,z\right)=\left(\dfrac{1}{5};-0,4;3\right)\)

17 tháng 1 2022

Vì \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)

\(\left(y+0,4\right)^{100}\ge\forall y\)

\(\left(z-3\right)^{678}\ge0\forall z\)

\(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\)

mà \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

Dấu ''='' xảy ra khi \(x=\dfrac{1}{5};y=-0,4;z=3\)

23 tháng 12 2019

\(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{matrix}\right.\forall x,y,z.\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\) \(\forall x,y,z.\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+\frac{1}{5}\\y=0-0,4\\z=0+3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)\in\left\{\frac{1}{5};-0,4;3\right\}.\)

Chúc bạn học tốt!

10 tháng 12 2017

vì (x-1/5)2004≥0 với mọi x

(y+0,4)100≥0 với mọi y

(z-3)678≥0 với mọi z

=>(x-1/5)2004+(y+0.4)100+(x-3)678≥0 với mọi x,y,z

nên \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-0,4\\z=3\end{matrix}\right.\)

27 tháng 5 2020

a) \(\frac{4}{5}\)\(\left(\frac{7}{2}+\frac{1}{4}\right)^2\)

= \(\frac{4}{5}\)\((\frac{15}{4})^2\)

= \(\frac{4}{5}\)\(\frac{225}{16}\)

= \(\frac{1}{1}\times\frac{45}{4}\)

= \(\frac{45}{4}\)