Tìm nghiệm nguyên của PT
\(5x^2+y^2=17+2xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x\right)^2+\left(x-y\right)^2=17\)
\(\Rightarrow\left(2x\right)^2\le17
\)
\(\Leftrightarrow4x^2\le16\)
\(\Leftrightarrow x^2\le4\)
\(x\in\left\{-2;-1;0;1;2\right\}\)
kẻ bảng thay từng giá trị vào
\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)
\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)
\(\Leftrightarrow-236y^2+668y-431\ge0\)
\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)
\(\Rightarrow y=1\)
Thế vào pt đầu ...
Giải pt nghiệm nguyên
a)3x^2 + 4y^2=6x+13
b)5x^2 + 2xy +y^2 -4x-40=0
c)x^2+y^2=x+y+8
d)x^2-y^2-4x-4y=92
\(5x^2+y^2=17+xy\)
<=> \(20x^2+4y^2-4xy=68\)
<=> \(\left(x^2-4xy+4y^2\right)+19x^2=68\)
<=> \(\left(x-2y\right)^2=68-19x^2\) (1)
Do \(VT=\left(x-2y\right)^2\ge0\)=> \(68-19x^2\ge0\)=> \(19x^2\le68\)
=> \(x^2\le\frac{68}{19}\)
Do x nguyên và x2 là số chính phương => x2 \(\in\){0; 1}
<=> x \(\in\){0; 1; -1}
(tự Thay x vào pt (1) để tìm y)
\(5x^2+y^2=17+2xy\)
\(\Leftrightarrow4x^2+\left(x-y\right)^2=17\)
Từ đây ta nhận xét rằng 17 tách thành tổng 2 số chính phương trong đó có 1 số chia hết cho 4. Từ đó ta có
[4x2, (x - y)2] = (16, 1)
Tới đây thì đơn giản rồi bạn tự làm tiếp nhé