cho tam giác ABC có AB=6cm, AC=10cm, BC=14cm. gọi D,E,F lần lượt là trung điểm AB,AC và BC. tính chu vi tam giác def
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì bạn tự vẽ đi nha. Bn không làm đc nhưng cũng phải vẽ hình đc.
Trong ΔABC: DA = DB (GT); EA = EC (GT)
=> DE là đường trung bình
=> DE = 1/2 BC = 1/2 14 = 7 (cm)
Trong ΔABC: DA = DB (GT); FB = FC (GT)
=> DF là đường trung bình
=> DF = 1/2 AC = 1/2 10 = 5 (cm)
Trong ΔABC: EA = EC (GT); FC = FB (GT)
=> EF là đường trung bình
=> EF = 1/2 AB = 1/2 6 = 3 (cm)
Vậy DE = 7cm; DF = 5cm; EF = 3cm.
Bài 7:
Đặt a=A'B',b=A'C', c=B'C'
Theo đề,ta có: a/6=b/8=c/10
mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm
nên b/8=c/10=9/6=3/2
=>b=12cm; c=15cm
Lần lượt cm được DE,DF,EF là đường trung bình tam giác ABC
\(\Rightarrow DE=\dfrac{1}{2}BC=7\left(cm\right);DF=\dfrac{1}{2}AC=5\left(cm\right);EF=\dfrac{1}{2}AB=3\left(cm\right)\)
Xét \(\Delta ABC\)có: D là trung điểm của AB, E là trung điểm của AC
\(\Rightarrow\)DE là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DE=\frac{1}{2}.BC=\frac{1}{2}.14=7\left(cm\right)\)
Tương tự ta có:
DF là đường trung bình của \(\Delta ABC\)\(\Rightarrow DF=\frac{1}{2}.AC=\frac{1}{2}.10=5\left(cm\right)\)
EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF=\frac{1}{2}.AB=\frac{1}{2}.6=3\left(cm\right)\)
Vậy \(DE=7cm\), \(DF=5cm\), \(EF=3cm\)
Xét ΔABC có
D là trung điểm của AB
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(DF=\dfrac{BC}{2}\)
Xét ΔABC có
D là trung điểm của AB
E là trung điểm của BC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: \(DE=\dfrac{AC}{2}\)
Xét ΔACB có
F là trung điểm của AC
E là trung điểm của BC
Do đó: FE là đường trung bình của ΔACB
Suy ra: \(FE=\dfrac{AB}{2}\)
Ta có: \(C_{DEF}=DF+DE+EF\)
\(=\dfrac{AB+AC+BC}{2}\)
\(=\dfrac{C_{ABC}}{2}\)
Vẽ hình và tự trình bày lại bạn nhé.
Theo tính chất của Tam giác vuông ta có:
BC2 = AB2 + AC2
<=> AC2 = BC2 - AB2 = 102 - 62 = 64
<=> AC = \(\sqrt{64}\)= 8 (cm)
Ta có :
D là trung điểm AB(gt)
E là trung điểm AC(gt)
=>DE//BC=>DE là đường trung bình của tam giác ABC=>DE=1/2 BC=> DE=14/2=7(cm)
Vậy DE=7cm
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>AC=8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\BH=\dfrac{6^2}{10}=3,6\left(cm\right)\end{matrix}\right.\)
b: ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra AE*AB=AF*AC
=>AE/AC=AF/AB
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
AE/AC=AF/AB
Do đó: ΔAEF đồng dạng với ΔACB
c: Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)
=>\(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AB}{AD}=\dfrac{CB}{CD}=\dfrac{AB+BC}{AD+CD}=\dfrac{AB+BC}{AC}\)(1)
ΔBAD vuông tại A có
\(cotABD=\dfrac{AB}{AD}\)(2)
BD là phân giác của góc ABC
=>\(\widehat{ABD}=\widehat{DBC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(cotDBC=\dfrac{AB+BC}{AC}\)
Bạn tự chứng minh được DE =1/2 AC ,EF =1/2 AB và DF =1/2 BC
Do đó: Tam giác ABC đồng dạng với tam giác DEF (c.c.c)
b, Tam giác DEF đồng dạng với tam giác ABC theo tỉ số 2 cạnh tương ứng là DE/AC =2 (hoặc EF/AB,DF/BC thì cũng ra 2)
Chúc bạn học tốt.
Lời giải:
Vì $D,E,F$ là trung điểm của $AB,AC,BC$ nên:
$DE$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$EF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AB$
$DF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $AC$
Suy ra:
$DE=\frac{1}{2}BC=7$ (cm)
$EF=\frac{1}{2}AB=3$ (cm)
$DF=\frac{1}{2}AC=5$ (cm)
Chu vi tam giác $DEF$: $7+3+5=15$ (cm)
Hình vẽ: